2014/04/13 12:11:30 -20.621 -70.715 18.6 5.3 Chile
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/04/13 12:11:30:0 -20.62 -70.71 18.6 5.3 Chile Stations used: C.GO01 C.GO02 CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB06 CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.01e+24 dyne-cm Mw = 5.27 Z = 20 km Plane Strike Dip Rake NP1 160 75 85 NP2 359 16 108 Principal Axes: Axis Value Plunge Azimuth T 1.01e+24 60 63 N 0.00e+00 5 161 P -1.01e+24 30 254 Moment Tensor: (dyne-cm) Component Value Mxx -4.20e+21 Mxy -9.67e+22 Mxz 3.20e+23 Myy -5.00e+23 Myz 8.12e+23 Mzz 5.04e+23 ############-- ----###############--- -------##################--- --------####################-- ----------#####################--- -----------######################--- -------------######################--- --------------#######################--- ---------------######### ##########--- ----------------######### T ###########--- -----------------######## ###########--- -----------------######################--- ----- ----------#####################--- ---- P -----------###################--- ---- -----------###################--- ------------------#################--- ------------------###############--- ------------------#############--- -----------------###########-- ------------------#######--- ----------------###--- ------------## Global CMT Convention Moment Tensor: R T P 5.04e+23 3.20e+23 -8.12e+23 3.20e+23 -4.20e+21 9.67e+22 -8.12e+23 9.67e+22 -5.00e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140413121130/index.html |
STK = 160 DIP = 75 RAKE = 85 MW = 5.27 HS = 20.0
The NDK file is 20140413121130.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/04/13 12:11:30:0 -20.62 -70.71 18.6 5.3 Chile Stations used: C.GO01 C.GO02 CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB06 CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.01e+24 dyne-cm Mw = 5.27 Z = 20 km Plane Strike Dip Rake NP1 160 75 85 NP2 359 16 108 Principal Axes: Axis Value Plunge Azimuth T 1.01e+24 60 63 N 0.00e+00 5 161 P -1.01e+24 30 254 Moment Tensor: (dyne-cm) Component Value Mxx -4.20e+21 Mxy -9.67e+22 Mxz 3.20e+23 Myy -5.00e+23 Myz 8.12e+23 Mzz 5.04e+23 ############-- ----###############--- -------##################--- --------####################-- ----------#####################--- -----------######################--- -------------######################--- --------------#######################--- ---------------######### ##########--- ----------------######### T ###########--- -----------------######## ###########--- -----------------######################--- ----- ----------#####################--- ---- P -----------###################--- ---- -----------###################--- ------------------#################--- ------------------###############--- ------------------#############--- -----------------###########-- ------------------#######--- ----------------###--- ------------## Global CMT Convention Moment Tensor: R T P 5.04e+23 3.20e+23 -8.12e+23 3.20e+23 -4.20e+21 9.67e+22 -8.12e+23 9.67e+22 -5.00e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140413121130/index.html |
Regional Moment Tensor (Mwr) Moment magnitude derived from a moment tensor inversion of complete waveforms at regional distances (less than ~8 degrees), generally used for the analysis of small to moderate size earthquakes (typically Mw 3.5-6.0) crust or upper mantle earthquakes. Moment 1.12e+17 N-m Magnitude 5.3 Percent DC 80% Depth 15.0 km Updated 2014-04-13 12:38:26 UTC Author us Catalog us Contributor us Code us_c000pipx_mwr Principal Axes Axis Value Plunge Azimuth T 1.060 55 60 N 0.104 7 160 P -1.164 34 255 Nodal Planes Plane Strike Dip Rake NP1 159 79 83 NP2 13 13 123 |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 155 40 90 5.01 0.4057 WVFGRD96 4.0 160 85 85 5.12 0.3340 WVFGRD96 6.0 340 90 -85 5.12 0.5033 WVFGRD96 8.0 160 85 85 5.20 0.6062 WVFGRD96 10.0 160 85 85 5.21 0.7012 WVFGRD96 12.0 160 80 85 5.22 0.7678 WVFGRD96 14.0 160 80 85 5.24 0.8107 WVFGRD96 16.0 160 75 85 5.25 0.8374 WVFGRD96 18.0 160 75 85 5.26 0.8490 WVFGRD96 20.0 160 75 85 5.27 0.8493 WVFGRD96 22.0 160 75 90 5.30 0.8416 WVFGRD96 24.0 360 15 110 5.30 0.8270 WVFGRD96 26.0 345 10 95 5.32 0.8073 WVFGRD96 28.0 330 10 80 5.33 0.7830 WVFGRD96 30.0 325 10 75 5.34 0.7542 WVFGRD96 32.0 325 10 75 5.35 0.7215 WVFGRD96 34.0 330 10 80 5.35 0.6861 WVFGRD96 36.0 330 10 80 5.35 0.6508 WVFGRD96 38.0 160 80 90 5.35 0.6172 WVFGRD96 40.0 340 5 90 5.50 0.5890 WVFGRD96 42.0 340 5 90 5.50 0.5472 WVFGRD96 44.0 320 10 65 5.50 0.5073 WVFGRD96 46.0 320 10 65 5.50 0.4697 WVFGRD96 48.0 310 10 55 5.50 0.4341 WVFGRD96 50.0 310 10 55 5.50 0.4006 WVFGRD96 52.0 305 10 50 5.51 0.3695 WVFGRD96 54.0 295 10 40 5.51 0.3414 WVFGRD96 56.0 165 70 65 5.51 0.3200 WVFGRD96 58.0 165 70 65 5.52 0.3047 WVFGRD96 60.0 335 60 85 5.51 0.2960 WVFGRD96 62.0 335 60 80 5.52 0.2930 WVFGRD96 64.0 335 60 80 5.52 0.2880 WVFGRD96 66.0 175 35 105 5.53 0.2909 WVFGRD96 68.0 165 35 90 5.52 0.2898 WVFGRD96 70.0 165 35 90 5.53 0.2881 WVFGRD96 72.0 165 35 90 5.53 0.2899 WVFGRD96 74.0 165 35 90 5.54 0.2887 WVFGRD96 76.0 165 35 90 5.54 0.2873 WVFGRD96 78.0 170 40 95 5.55 0.2908 WVFGRD96 80.0 165 40 90 5.55 0.2930 WVFGRD96 82.0 345 50 90 5.55 0.2910 WVFGRD96 84.0 165 40 85 5.55 0.2919 WVFGRD96 86.0 165 40 85 5.55 0.2934 WVFGRD96 88.0 280 50 -80 5.56 0.2927 WVFGRD96 90.0 280 50 -80 5.56 0.2957 WVFGRD96 92.0 290 55 -80 5.57 0.2993 WVFGRD96 94.0 290 55 -80 5.57 0.3047 WVFGRD96 96.0 290 55 -80 5.57 0.3097 WVFGRD96 98.0 290 55 -80 5.58 0.3125 WVFGRD96 100.0 285 55 -85 5.59 0.3164 WVFGRD96 102.0 285 55 -85 5.59 0.3190 WVFGRD96 104.0 285 55 -85 5.59 0.3226 WVFGRD96 106.0 340 50 -90 5.60 0.3226 WVFGRD96 108.0 165 40 -85 5.60 0.3247
The best solution is
WVFGRD96 20.0 160 75 85 5.27 0.8493
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: