2014/04/11 12:00:51 -20.068 -70.545 22.3 5.5 Chile
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/04/11 12:00:51:0 -20.07 -70.54 22.3 5.5 Chile Stations used: C.GO01 C.GO02 CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB06 CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 3.85e+23 dyne-cm Mw = 4.99 Z = 24 km Plane Strike Dip Rake NP1 350 81 -93 NP2 190 10 -70 Principal Axes: Axis Value Plunge Azimuth T 3.85e+23 36 83 N 0.00e+00 3 350 P -3.85e+23 54 256 Moment Tensor: (dyne-cm) Component Value Mxx -4.09e+21 Mxy 3.26e+20 Mxz 6.86e+22 Myy 1.28e+23 Myz 3.57e+23 Mzz -1.24e+23 ##--########## ##-------############# ###---------################ ##------------################ ##---------------################# ##----------------################## ##------------------################## ##-------------------################### ##--------------------################## ##---------------------########## ###### ##---------------------########## T ###### ##--------- ----------######### ###### ##--------- P ----------################## ##-------- ----------################# ##---------------------################# ##---------------------############### ##--------------------############## ##-------------------############# #------------------########### ##----------------########## #--------------####### -----------### Global CMT Convention Moment Tensor: R T P -1.24e+23 6.86e+22 -3.57e+23 6.86e+22 -4.09e+21 -3.26e+20 -3.57e+23 -3.26e+20 1.28e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140411120051/index.html |
STK = 190 DIP = 10 RAKE = -70 MW = 4.99 HS = 24.0
The NDK file is 20140411120051.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/04/11 12:00:51:0 -20.07 -70.54 22.3 5.5 Chile Stations used: C.GO01 C.GO02 CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB06 CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 3.85e+23 dyne-cm Mw = 4.99 Z = 24 km Plane Strike Dip Rake NP1 350 81 -93 NP2 190 10 -70 Principal Axes: Axis Value Plunge Azimuth T 3.85e+23 36 83 N 0.00e+00 3 350 P -3.85e+23 54 256 Moment Tensor: (dyne-cm) Component Value Mxx -4.09e+21 Mxy 3.26e+20 Mxz 6.86e+22 Myy 1.28e+23 Myz 3.57e+23 Mzz -1.24e+23 ##--########## ##-------############# ###---------################ ##------------################ ##---------------################# ##----------------################## ##------------------################## ##-------------------################### ##--------------------################## ##---------------------########## ###### ##---------------------########## T ###### ##--------- ----------######### ###### ##--------- P ----------################## ##-------- ----------################# ##---------------------################# ##---------------------############### ##--------------------############## ##-------------------############# #------------------########### ##----------------########## #--------------####### -----------### Global CMT Convention Moment Tensor: R T P -1.24e+23 6.86e+22 -3.57e+23 6.86e+22 -4.09e+21 -3.26e+20 -3.57e+23 -3.26e+20 1.28e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140411120051/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 145 40 90 4.71 0.4919 WVFGRD96 4.0 135 30 75 4.76 0.3218 WVFGRD96 6.0 265 10 10 4.75 0.3936 WVFGRD96 8.0 255 10 -5 4.84 0.4864 WVFGRD96 10.0 240 10 -20 4.85 0.5967 WVFGRD96 12.0 220 10 -40 4.87 0.6821 WVFGRD96 14.0 215 10 -45 4.89 0.7476 WVFGRD96 16.0 210 10 -50 4.91 0.7963 WVFGRD96 18.0 205 10 -55 4.93 0.8308 WVFGRD96 20.0 205 15 -55 4.95 0.8532 WVFGRD96 22.0 205 10 -55 4.97 0.8651 WVFGRD96 24.0 190 10 -70 4.99 0.8689 WVFGRD96 26.0 190 10 -70 5.00 0.8640 WVFGRD96 28.0 190 10 -70 5.02 0.8507 WVFGRD96 30.0 195 15 -65 5.03 0.8292 WVFGRD96 32.0 195 15 -65 5.04 0.8009 WVFGRD96 34.0 200 15 -60 5.04 0.7677 WVFGRD96 36.0 210 15 -50 5.04 0.7330 WVFGRD96 38.0 205 10 -55 5.04 0.7016 WVFGRD96 40.0 205 5 -55 5.19 0.6773 WVFGRD96 42.0 205 5 -55 5.19 0.6344 WVFGRD96 44.0 215 10 -45 5.19 0.5937 WVFGRD96 46.0 200 5 -55 5.18 0.5556 WVFGRD96 48.0 255 -5 0 5.18 0.5219 WVFGRD96 50.0 345 10 110 5.18 0.4884 WVFGRD96 52.0 305 35 65 5.22 0.4647 WVFGRD96 54.0 315 30 80 5.23 0.4523 WVFGRD96 56.0 150 60 90 5.23 0.4410 WVFGRD96 58.0 330 30 90 5.24 0.4282 WVFGRD96 60.0 150 65 90 5.24 0.4155 WVFGRD96 62.0 325 25 85 5.25 0.4049 WVFGRD96 64.0 325 25 85 5.25 0.3936 WVFGRD96 66.0 315 25 75 5.26 0.3836 WVFGRD96 68.0 315 25 75 5.27 0.3749 WVFGRD96 70.0 310 25 70 5.27 0.3684 WVFGRD96 72.0 315 20 75 5.27 0.3647 WVFGRD96 74.0 310 20 70 5.28 0.3616 WVFGRD96 76.0 305 20 65 5.29 0.3578 WVFGRD96 78.0 305 20 65 5.29 0.3549 WVFGRD96 80.0 335 65 -85 5.23 0.3563 WVFGRD96 82.0 145 25 -100 5.23 0.3604 WVFGRD96 84.0 145 25 -100 5.24 0.3636 WVFGRD96 86.0 335 60 -85 5.24 0.3720 WVFGRD96 88.0 335 60 -85 5.25 0.3787 WVFGRD96 90.0 335 60 -85 5.25 0.3884 WVFGRD96 92.0 145 30 -95 5.26 0.4019 WVFGRD96 94.0 330 60 -90 5.27 0.4117 WVFGRD96 96.0 150 30 -90 5.27 0.4287 WVFGRD96 98.0 325 60 -90 5.28 0.4376 WVFGRD96 100.0 325 60 -90 5.28 0.4516 WVFGRD96 102.0 145 30 -90 5.29 0.4590 WVFGRD96 104.0 150 35 -90 5.30 0.4727 WVFGRD96 106.0 150 35 -90 5.30 0.4792 WVFGRD96 108.0 150 35 -90 5.31 0.4902
The best solution is
WVFGRD96 24.0 190 10 -70 4.99 0.8689
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: