Location

2014/04/11 08:55:55 -19.976 -70.933 13.2 4.9 Chile

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2014/04/11 08:55:55:0 -19.98  -70.93  13.2 4.9 Chile
 
 Stations used:
   C.GO01 C.GO02 CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB06 
   CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB15 
   CX.PB16 CX.PSGCX GT.LPAZ 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 3.13e+23 dyne-cm
  Mw = 4.93 
  Z  = 20 km
  Plane   Strike  Dip  Rake
   NP1      160    60    85
   NP2      350    30    99
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.13e+23     74      57
    N   0.00e+00      4     162
    P  -3.13e+23     15     254

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.64e+22
       Mxy    -6.86e+22
       Mxz     6.61e+22
       Myy    -2.53e+23
       Myz     1.42e+23
       Mzz     2.70e+23
                                                     
                                                     
                                                     
                                                     
                     ########------                  
                 ---#############------              
              -----################-------           
             ------##################------          
           --------###################-------        
          ---------#####################------       
         ----------######################------      
        -----------######################-------     
        -----------############   ########------     
       ------------############ T ########-------    
       -------------###########   #########------    
       -------------#######################------    
       --   ---------######################------    
        - P ----------#####################-----     
        -   -----------###################------     
         --------------###################-----      
          ---------------################-----       
           ---------------##############-----        
             --------------############----          
              ---------------#########----           
                 --------------#####---              
                     ------------##                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  2.70e+23   6.61e+22  -1.42e+23 
  6.61e+22  -1.64e+22   6.86e+22 
 -1.42e+23   6.86e+22  -2.53e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140411085555/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 160
      DIP = 60
     RAKE = 85
       MW = 4.93
       HS = 20.0

The NDK file is 20140411085555.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2014/04/11 08:55:55:0 -19.98  -70.93  13.2 4.9 Chile
 
 Stations used:
   C.GO01 C.GO02 CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB06 
   CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB15 
   CX.PB16 CX.PSGCX GT.LPAZ 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 3.13e+23 dyne-cm
  Mw = 4.93 
  Z  = 20 km
  Plane   Strike  Dip  Rake
   NP1      160    60    85
   NP2      350    30    99
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.13e+23     74      57
    N   0.00e+00      4     162
    P  -3.13e+23     15     254

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.64e+22
       Mxy    -6.86e+22
       Mxz     6.61e+22
       Myy    -2.53e+23
       Myz     1.42e+23
       Mzz     2.70e+23
                                                     
                                                     
                                                     
                                                     
                     ########------                  
                 ---#############------              
              -----################-------           
             ------##################------          
           --------###################-------        
          ---------#####################------       
         ----------######################------      
        -----------######################-------     
        -----------############   ########------     
       ------------############ T ########-------    
       -------------###########   #########------    
       -------------#######################------    
       --   ---------######################------    
        - P ----------#####################-----     
        -   -----------###################------     
         --------------###################-----      
          ---------------################-----       
           ---------------##############-----        
             --------------############----          
              ---------------#########----           
                 --------------#####---              
                     ------------##                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  2.70e+23   6.61e+22  -1.42e+23 
  6.61e+22  -1.64e+22   6.86e+22 
 -1.42e+23   6.86e+22  -2.53e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140411085555/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   340    50   -90   4.69 0.4314
WVFGRD96    4.0   -10    75   -70   4.77 0.3105
WVFGRD96    6.0   180    10   -80   4.75 0.4076
WVFGRD96    8.0   195    10   -65   4.83 0.4796
WVFGRD96   10.0   225    10   -35   4.83 0.5454
WVFGRD96   12.0   165    80    85   4.84 0.5958
WVFGRD96   14.0   165    70    85   4.87 0.6483
WVFGRD96   16.0   160    60    85   4.91 0.6899
WVFGRD96   18.0   350    30    95   4.92 0.7126
WVFGRD96   20.0   160    60    85   4.93 0.7179
WVFGRD96   22.0   350    30   100   4.94 0.7113
WVFGRD96   24.0   345    30    90   4.94 0.6964
WVFGRD96   26.0   330    30    70   4.95 0.6766
WVFGRD96   28.0   325    30    65   4.96 0.6528
WVFGRD96   30.0   325    30    65   4.97 0.6231
WVFGRD96   32.0   325    30    65   4.98 0.5888
WVFGRD96   34.0   345    25    90   4.98 0.5538
WVFGRD96   36.0   330    25    75   4.98 0.5167
WVFGRD96   38.0   165    65    90   4.99 0.4821
WVFGRD96   40.0   330    20    75   5.12 0.4465
WVFGRD96   42.0   350    20    95   5.12 0.4145
WVFGRD96   44.0   345    20    90   5.12 0.3832
WVFGRD96   46.0   340    25    85   5.13 0.3549
WVFGRD96   48.0   340    25    85   5.13 0.3284
WVFGRD96   50.0     5    25   -60   5.14 0.3122
WVFGRD96   52.0    10    25   -55   5.14 0.2974
WVFGRD96   54.0     0    20   -70   5.14 0.2784
WVFGRD96   56.0     5    20   -65   5.14 0.2649
WVFGRD96   58.0    10    20   -60   5.15 0.2515
WVFGRD96   60.0    -5    15   -80   5.15 0.2407
WVFGRD96   62.0    15    15   -60   5.15 0.2335
WVFGRD96   64.0     5    10   -70   5.15 0.2262
WVFGRD96   66.0   340    75    75   5.15 0.2271
WVFGRD96   68.0   345    70    80   5.16 0.2331
WVFGRD96   70.0   345    70    80   5.16 0.2379
WVFGRD96   72.0   345    70    80   5.17 0.2460
WVFGRD96   74.0   345    65    80   5.18 0.2492
WVFGRD96   76.0   345    65    80   5.19 0.2566
WVFGRD96   78.0   345    65    80   5.19 0.2619
WVFGRD96   80.0   340    65    80   5.20 0.2679
WVFGRD96   82.0   180    30   105   5.21 0.2732
WVFGRD96   84.0   175    30    95   5.21 0.2756
WVFGRD96   86.0   345    60    85   5.22 0.2822
WVFGRD96   88.0   350    55    90   5.22 0.2864
WVFGRD96   90.0   350    55    90   5.22 0.2882
WVFGRD96   92.0   350    55    90   5.23 0.2915
WVFGRD96   94.0   350    55    90   5.23 0.2949
WVFGRD96   96.0   170    35    90   5.23 0.2936
WVFGRD96   98.0   170    40    90   5.23 0.2956
WVFGRD96  100.0   350    50    90   5.23 0.2949
WVFGRD96  102.0   170    40    90   5.24 0.2961
WVFGRD96  104.0   170    40    90   5.24 0.2970
WVFGRD96  106.0   170    40    90   5.24 0.2943
WVFGRD96  108.0   170    40    90   5.24 0.2940

The best solution is

WVFGRD96   20.0   160    60    85   4.93 0.7179

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Fri Apr 11 06:17:23 CDT 2014