2014/04/11 08:39:45 -20.593 -70.874 27.6 4.9 Chile
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/04/11 08:39:45:0 -20.59 -70.87 27.6 4.9 Chile Stations used: C.GO01 CX.MNMCX CX.PATCX CX.PB01 CX.PB06 CX.PB07 CX.PB08 CX.PB09 CX.PB11 CX.PB12 CX.PSGCX Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.04e+23 dyne-cm Mw = 4.61 Z = 22 km Plane Strike Dip Rake NP1 335 50 65 NP2 191 46 117 Principal Axes: Axis Value Plunge Azimuth T 1.04e+23 71 178 N 0.00e+00 19 352 P -1.04e+23 2 82 Moment Tensor: (dyne-cm) Component Value Mxx 9.17e+21 Mxy -1.38e+22 Mxz -3.24e+22 Myy -1.02e+23 Myz -2.88e+21 Mzz 9.24e+22 ########------ -------##------------- ----------####-------------- ----------#######------------- ----------###########------------- ----------#############------------- ----------################------------ ----------##################------------ ----------###################---------- ----------#####################--------- P ----------#####################--------- ----------######################---------- ----------########## #########---------- ---------########## T ##########-------- ---------########## ##########-------- --------#######################------- --------######################------ -------######################----- ------####################---- ------##################---- ----#################- --############ Global CMT Convention Moment Tensor: R T P 9.24e+22 -3.24e+22 2.88e+21 -3.24e+22 9.17e+21 1.38e+22 2.88e+21 1.38e+22 -1.02e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140411083945/index.html |
STK = 335 DIP = 50 RAKE = 65 MW = 4.61 HS = 22.0
The NDK file is 20140411083945.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/04/11 08:39:45:0 -20.59 -70.87 27.6 4.9 Chile Stations used: C.GO01 CX.MNMCX CX.PATCX CX.PB01 CX.PB06 CX.PB07 CX.PB08 CX.PB09 CX.PB11 CX.PB12 CX.PSGCX Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.04e+23 dyne-cm Mw = 4.61 Z = 22 km Plane Strike Dip Rake NP1 335 50 65 NP2 191 46 117 Principal Axes: Axis Value Plunge Azimuth T 1.04e+23 71 178 N 0.00e+00 19 352 P -1.04e+23 2 82 Moment Tensor: (dyne-cm) Component Value Mxx 9.17e+21 Mxy -1.38e+22 Mxz -3.24e+22 Myy -1.02e+23 Myz -2.88e+21 Mzz 9.24e+22 ########------ -------##------------- ----------####-------------- ----------#######------------- ----------###########------------- ----------#############------------- ----------################------------ ----------##################------------ ----------###################---------- ----------#####################--------- P ----------#####################--------- ----------######################---------- ----------########## #########---------- ---------########## T ##########-------- ---------########## ##########-------- --------#######################------- --------######################------ -------######################----- ------####################---- ------##################---- ----#################- --############ Global CMT Convention Moment Tensor: R T P 9.24e+22 -3.24e+22 2.88e+21 -3.24e+22 9.17e+21 1.38e+22 2.88e+21 1.38e+22 -1.02e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140411083945/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 295 45 -90 4.41 0.1523 WVFGRD96 4.0 160 65 -20 4.40 0.1233 WVFGRD96 6.0 315 75 -60 4.43 0.1372 WVFGRD96 8.0 315 75 -65 4.51 0.1612 WVFGRD96 10.0 310 75 -60 4.52 0.1845 WVFGRD96 12.0 300 65 -60 4.55 0.2029 WVFGRD96 14.0 305 65 -55 4.57 0.2164 WVFGRD96 16.0 305 65 -55 4.59 0.2248 WVFGRD96 18.0 305 65 -50 4.60 0.2289 WVFGRD96 20.0 155 55 65 4.60 0.2316 WVFGRD96 22.0 335 50 65 4.61 0.2338 WVFGRD96 24.0 335 50 65 4.62 0.2336 WVFGRD96 26.0 335 50 65 4.63 0.2311 WVFGRD96 28.0 330 50 60 4.65 0.2270 WVFGRD96 30.0 255 55 65 4.70 0.2226 WVFGRD96 32.0 255 55 65 4.72 0.2172 WVFGRD96 34.0 255 55 65 4.73 0.2103 WVFGRD96 36.0 255 55 65 4.74 0.2022 WVFGRD96 38.0 255 55 65 4.76 0.1940 WVFGRD96 40.0 255 60 70 4.87 0.1753 WVFGRD96 42.0 255 60 70 4.88 0.1696 WVFGRD96 44.0 255 60 70 4.89 0.1624 WVFGRD96 46.0 340 35 75 4.84 0.1553 WVFGRD96 48.0 330 40 60 4.85 0.1488 WVFGRD96 50.0 330 40 60 4.86 0.1422 WVFGRD96 52.0 330 40 60 4.87 0.1351 WVFGRD96 54.0 330 35 60 4.87 0.1289 WVFGRD96 56.0 330 35 60 4.87 0.1228 WVFGRD96 58.0 325 35 55 4.88 0.1171 WVFGRD96 60.0 320 35 50 4.88 0.1118 WVFGRD96 62.0 155 65 55 4.87 0.1081 WVFGRD96 64.0 155 65 55 4.87 0.1060 WVFGRD96 66.0 160 65 60 4.88 0.1040 WVFGRD96 68.0 160 65 60 4.89 0.1026 WVFGRD96 70.0 155 70 55 4.88 0.1016 WVFGRD96 72.0 95 60 65 4.91 0.1011 WVFGRD96 74.0 95 60 65 4.91 0.1005 WVFGRD96 76.0 100 60 75 4.92 0.0999 WVFGRD96 78.0 100 60 75 4.93 0.1015 WVFGRD96 80.0 100 60 75 4.93 0.1007 WVFGRD96 82.0 100 65 85 4.96 0.1025 WVFGRD96 84.0 100 65 90 4.97 0.1022 WVFGRD96 86.0 100 65 90 4.97 0.1009 WVFGRD96 88.0 100 65 90 4.97 0.1025 WVFGRD96 90.0 275 25 85 4.98 0.1019 WVFGRD96 92.0 105 65 95 4.99 0.1009 WVFGRD96 94.0 105 65 95 4.99 0.1005 WVFGRD96 96.0 275 25 85 4.98 0.1013 WVFGRD96 98.0 280 30 80 4.99 0.1008 WVFGRD96 100.0 280 30 80 4.99 0.1009 WVFGRD96 102.0 275 30 75 5.00 0.1026 WVFGRD96 104.0 270 30 70 5.01 0.1021 WVFGRD96 106.0 265 30 65 5.02 0.1027 WVFGRD96 108.0 265 30 65 5.02 0.1030
The best solution is
WVFGRD96 22.0 335 50 65 4.61 0.2338
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: