Location

2014/04/11 01:08:03 -33.430 -72.104 25.0 5.1 Chile

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2014/04/11 01:08:03:0 -33.43  -72.10  25.0 5.1 Chile
 
 Stations used:
   C.GO04 C.GO05 G.PEL 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 1.27e+23 dyne-cm
  Mw = 4.67 
  Z  = 18 km
  Plane   Strike  Dip  Rake
   NP1      151    76    95
   NP2      310    15    70
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.27e+23     59      68
    N   0.00e+00      5     329
    P  -1.27e+23     31     236

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -2.40e+22
       Mxy    -3.14e+22
       Mxz     5.23e+22
       Myy    -3.58e+22
       Myz     9.88e+22
       Mzz     5.98e+22
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 #-##############------              
              #---###################-----           
             -----#####################----          
           --------######################----        
          ---------########################---       
         -----------########################---      
        -------------########################---     
        --------------############   #########--     
       ---------------############ T #########---    
       ----------------###########   ##########--    
       -----------------#######################--    
       ------------------######################--    
        -------------------####################-     
        ------   -----------###################-     
         ----- P ------------#################-      
          ----   -------------################       
           ---------------------#############        
             --------------------##########          
              ---------------------#######           
                 --------------------##              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  5.98e+22   5.23e+22  -9.88e+22 
  5.23e+22  -2.40e+22   3.14e+22 
 -9.88e+22   3.14e+22  -3.58e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140411010803/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 310
      DIP = 15
     RAKE = 70
       MW = 4.67
       HS = 18.0

The NDK file is 20140411010803.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2014/04/11 01:08:03:0 -33.43  -72.10  25.0 5.1 Chile
 
 Stations used:
   C.GO04 C.GO05 G.PEL 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 1.27e+23 dyne-cm
  Mw = 4.67 
  Z  = 18 km
  Plane   Strike  Dip  Rake
   NP1      151    76    95
   NP2      310    15    70
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.27e+23     59      68
    N   0.00e+00      5     329
    P  -1.27e+23     31     236

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -2.40e+22
       Mxy    -3.14e+22
       Mxz     5.23e+22
       Myy    -3.58e+22
       Myz     9.88e+22
       Mzz     5.98e+22
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 #-##############------              
              #---###################-----           
             -----#####################----          
           --------######################----        
          ---------########################---       
         -----------########################---      
        -------------########################---     
        --------------############   #########--     
       ---------------############ T #########---    
       ----------------###########   ##########--    
       -----------------#######################--    
       ------------------######################--    
        -------------------####################-     
        ------   -----------###################-     
         ----- P ------------#################-      
          ----   -------------################       
           ---------------------#############        
             --------------------##########          
              ---------------------#######           
                 --------------------##              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  5.98e+22   5.23e+22  -9.88e+22 
  5.23e+22  -2.40e+22   3.14e+22 
 -9.88e+22   3.14e+22  -3.58e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140411010803/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   150    50   -90   4.46 0.4345
WVFGRD96    4.0    45    60   -10   4.58 0.3856
WVFGRD96    6.0   270     5    35   4.53 0.4422
WVFGRD96    8.0   290     5    55   4.61 0.5341
WVFGRD96   10.0   305    10    70   4.62 0.6261
WVFGRD96   12.0   300    15    65   4.64 0.6904
WVFGRD96   14.0   310    15    75   4.65 0.7326
WVFGRD96   16.0   290    20    55   4.67 0.7546
WVFGRD96   18.0   310    15    70   4.67 0.7605
WVFGRD96   20.0   305    15    65   4.68 0.7555
WVFGRD96   22.0   300    15    60   4.70 0.7432
WVFGRD96   24.0   295    10    55   4.72 0.7242
WVFGRD96   26.0   295    10    55   4.73 0.7001
WVFGRD96   28.0   270    10    30   4.74 0.6702
WVFGRD96   30.0   250    10    10   4.76 0.6353
WVFGRD96   32.0   250    10    10   4.76 0.5971
WVFGRD96   34.0   230    10   -10   4.77 0.5573
WVFGRD96   36.0   225    15   -15   4.78 0.5173
WVFGRD96   38.0   230    15   -10   4.77 0.4805
WVFGRD96   40.0   230    10   -10   4.92 0.4500
WVFGRD96   42.0   230    15   -10   4.91 0.3959
WVFGRD96   44.0   180    60    50   4.96 0.3491
WVFGRD96   46.0   180    60    50   4.96 0.3161
WVFGRD96   48.0   185    55    55   4.95 0.2876
WVFGRD96   50.0   -15    45    40   4.98 0.2680
WVFGRD96   52.0   -15    45    40   4.98 0.2511
WVFGRD96   54.0   150    90   -30   5.01 0.2427
WVFGRD96   56.0   150    90   -30   5.02 0.2481
WVFGRD96   58.0   340    75    40   5.01 0.2623
WVFGRD96   60.0   340    70    40   5.03 0.2727
WVFGRD96   62.0   340    70    40   5.04 0.2842
WVFGRD96   64.0   340    70    40   5.05 0.2772
WVFGRD96   66.0   345    65    45   5.05 0.2857
WVFGRD96   68.0   350    60    50   5.06 0.2955
WVFGRD96   70.0   355    55    55   5.06 0.2885
WVFGRD96   72.0   355    55    55   5.07 0.2989
WVFGRD96   74.0   355    55    55   5.08 0.3080
WVFGRD96   76.0    -5    55    55   5.08 0.2984
WVFGRD96   78.0   -10    55    50   5.09 0.3068
WVFGRD96   80.0   -10    55    50   5.10 0.3146
WVFGRD96   82.0   355    50    55   5.10 0.3046
WVFGRD96   84.0   355    50    55   5.10 0.3118
WVFGRD96   86.0   350    50    50   5.11 0.3037
WVFGRD96   88.0   350    50    50   5.11 0.3113
WVFGRD96   90.0   350    50    50   5.12 0.3180
WVFGRD96   92.0   350    50    50   5.11 0.3102
WVFGRD96   94.0   350    50    50   5.12 0.3168
WVFGRD96   96.0   175    45   -50   5.09 0.3203
WVFGRD96   98.0   175    45   -50   5.09 0.3255
WVFGRD96  100.0   175    45   -50   5.10 0.3324
WVFGRD96  102.0   180    50   -45   5.12 0.3388
WVFGRD96  104.0   180    50   -45   5.12 0.3427
WVFGRD96  106.0   180    50   -45   5.12 0.3478
WVFGRD96  108.0   180    50   -45   5.12 0.3509

The best solution is

WVFGRD96   18.0   310    15    70   4.67 0.7605

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Fri Apr 11 08:05:46 CDT 2014