2014/04/11 01:08:03 -33.430 -72.104 25.0 5.1 Chile
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/04/11 01:08:03:0 -33.43 -72.10 25.0 5.1 Chile Stations used: C.GO04 C.GO05 G.PEL Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.27e+23 dyne-cm Mw = 4.67 Z = 18 km Plane Strike Dip Rake NP1 151 76 95 NP2 310 15 70 Principal Axes: Axis Value Plunge Azimuth T 1.27e+23 59 68 N 0.00e+00 5 329 P -1.27e+23 31 236 Moment Tensor: (dyne-cm) Component Value Mxx -2.40e+22 Mxy -3.14e+22 Mxz 5.23e+22 Myy -3.58e+22 Myz 9.88e+22 Mzz 5.98e+22 -------------- #-##############------ #---###################----- -----#####################---- --------######################---- ---------########################--- -----------########################--- -------------########################--- --------------############ #########-- ---------------############ T #########--- ----------------########### ##########-- -----------------#######################-- ------------------######################-- -------------------####################- ------ -----------###################- ----- P ------------#################- ---- -------------################ ---------------------############# --------------------########## ---------------------####### --------------------## -------------- Global CMT Convention Moment Tensor: R T P 5.98e+22 5.23e+22 -9.88e+22 5.23e+22 -2.40e+22 3.14e+22 -9.88e+22 3.14e+22 -3.58e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140411010803/index.html |
STK = 310 DIP = 15 RAKE = 70 MW = 4.67 HS = 18.0
The NDK file is 20140411010803.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/04/11 01:08:03:0 -33.43 -72.10 25.0 5.1 Chile Stations used: C.GO04 C.GO05 G.PEL Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.27e+23 dyne-cm Mw = 4.67 Z = 18 km Plane Strike Dip Rake NP1 151 76 95 NP2 310 15 70 Principal Axes: Axis Value Plunge Azimuth T 1.27e+23 59 68 N 0.00e+00 5 329 P -1.27e+23 31 236 Moment Tensor: (dyne-cm) Component Value Mxx -2.40e+22 Mxy -3.14e+22 Mxz 5.23e+22 Myy -3.58e+22 Myz 9.88e+22 Mzz 5.98e+22 -------------- #-##############------ #---###################----- -----#####################---- --------######################---- ---------########################--- -----------########################--- -------------########################--- --------------############ #########-- ---------------############ T #########--- ----------------########### ##########-- -----------------#######################-- ------------------######################-- -------------------####################- ------ -----------###################- ----- P ------------#################- ---- -------------################ ---------------------############# --------------------########## ---------------------####### --------------------## -------------- Global CMT Convention Moment Tensor: R T P 5.98e+22 5.23e+22 -9.88e+22 5.23e+22 -2.40e+22 3.14e+22 -9.88e+22 3.14e+22 -3.58e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140411010803/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 150 50 -90 4.46 0.4345 WVFGRD96 4.0 45 60 -10 4.58 0.3856 WVFGRD96 6.0 270 5 35 4.53 0.4422 WVFGRD96 8.0 290 5 55 4.61 0.5341 WVFGRD96 10.0 305 10 70 4.62 0.6261 WVFGRD96 12.0 300 15 65 4.64 0.6904 WVFGRD96 14.0 310 15 75 4.65 0.7326 WVFGRD96 16.0 290 20 55 4.67 0.7546 WVFGRD96 18.0 310 15 70 4.67 0.7605 WVFGRD96 20.0 305 15 65 4.68 0.7555 WVFGRD96 22.0 300 15 60 4.70 0.7432 WVFGRD96 24.0 295 10 55 4.72 0.7242 WVFGRD96 26.0 295 10 55 4.73 0.7001 WVFGRD96 28.0 270 10 30 4.74 0.6702 WVFGRD96 30.0 250 10 10 4.76 0.6353 WVFGRD96 32.0 250 10 10 4.76 0.5971 WVFGRD96 34.0 230 10 -10 4.77 0.5573 WVFGRD96 36.0 225 15 -15 4.78 0.5173 WVFGRD96 38.0 230 15 -10 4.77 0.4805 WVFGRD96 40.0 230 10 -10 4.92 0.4500 WVFGRD96 42.0 230 15 -10 4.91 0.3959 WVFGRD96 44.0 180 60 50 4.96 0.3491 WVFGRD96 46.0 180 60 50 4.96 0.3161 WVFGRD96 48.0 185 55 55 4.95 0.2876 WVFGRD96 50.0 -15 45 40 4.98 0.2680 WVFGRD96 52.0 -15 45 40 4.98 0.2511 WVFGRD96 54.0 150 90 -30 5.01 0.2427 WVFGRD96 56.0 150 90 -30 5.02 0.2481 WVFGRD96 58.0 340 75 40 5.01 0.2623 WVFGRD96 60.0 340 70 40 5.03 0.2727 WVFGRD96 62.0 340 70 40 5.04 0.2842 WVFGRD96 64.0 340 70 40 5.05 0.2772 WVFGRD96 66.0 345 65 45 5.05 0.2857 WVFGRD96 68.0 350 60 50 5.06 0.2955 WVFGRD96 70.0 355 55 55 5.06 0.2885 WVFGRD96 72.0 355 55 55 5.07 0.2989 WVFGRD96 74.0 355 55 55 5.08 0.3080 WVFGRD96 76.0 -5 55 55 5.08 0.2984 WVFGRD96 78.0 -10 55 50 5.09 0.3068 WVFGRD96 80.0 -10 55 50 5.10 0.3146 WVFGRD96 82.0 355 50 55 5.10 0.3046 WVFGRD96 84.0 355 50 55 5.10 0.3118 WVFGRD96 86.0 350 50 50 5.11 0.3037 WVFGRD96 88.0 350 50 50 5.11 0.3113 WVFGRD96 90.0 350 50 50 5.12 0.3180 WVFGRD96 92.0 350 50 50 5.11 0.3102 WVFGRD96 94.0 350 50 50 5.12 0.3168 WVFGRD96 96.0 175 45 -50 5.09 0.3203 WVFGRD96 98.0 175 45 -50 5.09 0.3255 WVFGRD96 100.0 175 45 -50 5.10 0.3324 WVFGRD96 102.0 180 50 -45 5.12 0.3388 WVFGRD96 104.0 180 50 -45 5.12 0.3427 WVFGRD96 106.0 180 50 -45 5.12 0.3478 WVFGRD96 108.0 180 50 -45 5.12 0.3509
The best solution is
WVFGRD96 18.0 310 15 70 4.67 0.7605
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: