2014/04/11 00:01:44 -20.748 -70.724 17.5 6.0 Chile
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/04/11 00:01:44:0 -20.75 -70.72 17.5 6.0 Chile Stations used: C.GO01 C.GO02 CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB06 CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.17e+25 dyne-cm Mw = 5.98 Z = 20 km Plane Strike Dip Rake NP1 198 76 111 NP2 320 25 35 Principal Axes: Axis Value Plunge Azimuth T 1.17e+25 54 133 N 0.00e+00 20 12 P -1.17e+25 28 271 Moment Tensor: (dyne-cm) Component Value Mxx 1.87e+24 Mxy -1.84e+24 Mxz -3.90e+24 Myy -7.03e+24 Myz 8.92e+24 Mzz 5.16e+24 #############- ##---------####------- -----------------##--------- -----------------######------- ------------------#########------- ------------------############------ ------------------##############------ -------------------################----- ------------------#################----- ---- -----------###################----- ---- P -----------####################---- ---- ----------#####################---- ----------------######################---- ---------------########## #########--- ---------------########## T #########--- -------------########### #########-- ------------######################-- -----------######################- ---------##################### -------####################- ----################## -############# Global CMT Convention Moment Tensor: R T P 5.16e+24 -3.90e+24 -8.92e+24 -3.90e+24 1.87e+24 1.84e+24 -8.92e+24 1.84e+24 -7.03e+24 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140411000144/index.html |
STK = 320 DIP = 25 RAKE = 35 MW = 5.98 HS = 20.0
The NDK file is 20140411000144.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/04/11 00:01:44:0 -20.75 -70.72 17.5 6.0 Chile Stations used: C.GO01 C.GO02 CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB06 CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.17e+25 dyne-cm Mw = 5.98 Z = 20 km Plane Strike Dip Rake NP1 198 76 111 NP2 320 25 35 Principal Axes: Axis Value Plunge Azimuth T 1.17e+25 54 133 N 0.00e+00 20 12 P -1.17e+25 28 271 Moment Tensor: (dyne-cm) Component Value Mxx 1.87e+24 Mxy -1.84e+24 Mxz -3.90e+24 Myy -7.03e+24 Myz 8.92e+24 Mzz 5.16e+24 #############- ##---------####------- -----------------##--------- -----------------######------- ------------------#########------- ------------------############------ ------------------##############------ -------------------################----- ------------------#################----- ---- -----------###################----- ---- P -----------####################---- ---- ----------#####################---- ----------------######################---- ---------------########## #########--- ---------------########## T #########--- -------------########### #########-- ------------######################-- -----------######################- ---------##################### -------####################- ----################## -############# Global CMT Convention Moment Tensor: R T P 5.16e+24 -3.90e+24 -8.92e+24 -3.90e+24 1.87e+24 1.84e+24 -8.92e+24 1.84e+24 -7.03e+24 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140411000144/index.html |
Regional Moment Tensor (Mwr) Moment magnitude derived from a moment tensor inversion of complete waveforms at regional distances (less than ~8 degrees), generally used for the analysis of small to moderate size earthquakes (typically Mw 3.5-6.0) crust or upper mantle earthquakes. Moment 1.25e+18 N-m Magnitude 6.0 Percent DC 67% Depth 15.0 km Updated 2014-04-11 00:30:23 UTC Author us Catalog us Contributor us Code us_c000pfgr_mwr Principal Axes Axis Value Plunge Azimuth T 1.147 49 133 N 0.186 18 21 P -1.333 36 277 Nodal Planes Plane Strike Dip Rake NP1 203° 83 108 NP2 313° 20 21 | April 11, 2014, NEAR COAST OF NORTHERN CHILE, MW=6.2 Howard Koss CENTROID-MOMENT-TENSOR SOLUTION GCMT EVENT: C201404110001A DATA: II MN LD G GE DK KP L.P.BODY WAVES: 74S, 142C, T= 40 MANTLE WAVES: 53S, 73C, T=125 SURFACE WAVES: 93S, 206C, T= 50 TIMESTAMP: Q-20140411034219 CENTROID LOCATION: ORIGIN TIME: 00:01:51.3 0.1 LAT:20.59S 0.01;LON: 70.90W 0.01 DEP: 15.4 0.5;TRIANG HDUR: 3.0 MOMENT TENSOR: SCALE 10**25 D-CM RR= 0.981 0.018; TT= 0.337 0.012 PP=-1.320 0.017; RT=-0.591 0.055 RP=-2.070 0.096; TP= 0.165 0.010 PRINCIPAL AXES: 1.(T) VAL= 2.372;PLG=56;AZM=120 2.(N) 0.173; 12; 11 3.(P) -2.547; 31; 274 BEST DBLE.COUPLE:M0= 2.46*10**25 NP1: STRIKE=329;DIP=18;SLIP= 47 NP2: STRIKE=194;DIP=77;SLIP= 103 #########-- ------------##----- -------------######---- --------------#########---- --------------###########---- ---------------#############--- --------------##############--- ---- -------################--- ---- P -------################--- ---- -------####### #######-- -------------######## T #######-- ------------######## ######-- ------------#################-- ----------#################-- ---------################-- -------###############- -----#############- -########## |
W-phase Moment Tensor (Mww) Moment magnitude derived from a centroid moment tensor inversion of the W-phase, a very long period phase (~100 - 1000 s) arriving at the same time as the P-wave. W-phase solutions can be computed at both regional (~5 to ~20 degrees) and teleseismic (~30 to ~90 degrees) distances. Moment 1.46e+18 N-m Magnitude 6.0 Percent DC 99% Depth 23.5 km Updated 2014-04-11 07:28:38 UTC Author us Catalog us Contributor us Code usc000pfgr Principal Axes Axis Value Plunge Azimuth T 1.457 61 125 N 0.003 15 6 P -1.461 24 269 Nodal Planes Plane Strike Dip Rake NP1 192 71 106 NP2 331 25 52 |
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 200 40 90 5.74 0.4259 WVFGRD96 4.0 305 15 15 5.82 0.3597 WVFGRD96 6.0 300 15 15 5.84 0.5311 WVFGRD96 8.0 305 10 20 5.92 0.6339 WVFGRD96 10.0 315 15 30 5.92 0.7300 WVFGRD96 12.0 320 20 35 5.94 0.7949 WVFGRD96 14.0 325 20 40 5.95 0.8376 WVFGRD96 16.0 325 25 40 5.96 0.8634 WVFGRD96 18.0 320 25 35 5.97 0.8749 WVFGRD96 20.0 320 25 35 5.98 0.8755 WVFGRD96 22.0 320 25 35 6.00 0.8684 WVFGRD96 24.0 315 25 30 6.02 0.8549 WVFGRD96 26.0 315 25 30 6.03 0.8366 WVFGRD96 28.0 310 25 25 6.04 0.8138 WVFGRD96 30.0 310 25 25 6.05 0.7875 WVFGRD96 32.0 310 25 25 6.06 0.7574 WVFGRD96 34.0 310 25 25 6.07 0.7255 WVFGRD96 36.0 305 25 20 6.07 0.6926 WVFGRD96 38.0 305 25 20 6.07 0.6618 WVFGRD96 40.0 305 20 20 6.21 0.6364 WVFGRD96 42.0 305 20 20 6.22 0.6036 WVFGRD96 44.0 305 20 20 6.22 0.5703 WVFGRD96 46.0 300 20 15 6.23 0.5380 WVFGRD96 48.0 295 25 5 6.23 0.5078 WVFGRD96 50.0 295 25 5 6.24 0.4793 WVFGRD96 52.0 290 25 0 6.24 0.4521 WVFGRD96 54.0 290 25 0 6.24 0.4273 WVFGRD96 56.0 285 25 -5 6.24 0.4046 WVFGRD96 58.0 280 25 -15 6.24 0.3858 WVFGRD96 60.0 275 25 -25 6.25 0.3717 WVFGRD96 62.0 275 30 -30 6.25 0.3608 WVFGRD96 64.0 265 30 -45 6.25 0.3529 WVFGRD96 66.0 260 30 -50 6.26 0.3498 WVFGRD96 68.0 265 35 -50 6.26 0.3486 WVFGRD96 70.0 260 35 -55 6.27 0.3501 WVFGRD96 72.0 220 35 -75 6.27 0.3523 WVFGRD96 74.0 220 35 -75 6.28 0.3601 WVFGRD96 76.0 220 35 -75 6.29 0.3675 WVFGRD96 78.0 220 35 -75 6.29 0.3713 WVFGRD96 80.0 220 35 -75 6.30 0.3777 WVFGRD96 82.0 215 35 -80 6.31 0.3797 WVFGRD96 84.0 215 35 -80 6.31 0.3842 WVFGRD96 86.0 215 35 -80 6.32 0.3903 WVFGRD96 88.0 215 35 -80 6.32 0.3915 WVFGRD96 90.0 220 40 -80 6.32 0.3953 WVFGRD96 92.0 215 40 -80 6.33 0.3986 WVFGRD96 94.0 215 40 -80 6.33 0.4000 WVFGRD96 96.0 10 50 -80 6.33 0.4026 WVFGRD96 98.0 10 50 -80 6.33 0.4039 WVFGRD96 100.0 10 50 -80 6.34 0.4065 WVFGRD96 102.0 10 50 -80 6.34 0.4085 WVFGRD96 104.0 10 50 -80 6.34 0.4081 WVFGRD96 106.0 10 50 -80 6.35 0.4100 WVFGRD96 108.0 10 50 -80 6.35 0.4086
The best solution is
WVFGRD96 20.0 320 25 35 5.98 0.8755
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: