Location

2014/04/10 10:25:32 -26.832 -71.120 26.4 4.6 Chile

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2014/04/10 10:25:32:0 -26.83  -71.12  26.4 4.6 Chile
 
 Stations used:
   C.GO02 C.GO03 C.GO04 CX.PB04 CX.PB06 CX.PB07 CX.PB09 
   CX.PB10 CX.PB14 CX.PB15 IU.LCO IU.LVC 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 5.56e+22 dyne-cm
  Mw = 4.43 
  Z  = 28 km
  Plane   Strike  Dip  Rake
   NP1      170    65    85
   NP2        2    25   101
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.56e+22     70      70
    N   0.00e+00      5     172
    P  -5.56e+22     20     264

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     2.23e+20
       Mxy    -3.13e+21
       Mxz     8.20e+21
       Myy    -4.26e+22
       Myz     3.47e+22
       Mzz     4.24e+22
                                                     
                                                     
                                                     
                                                     
                     ---########---                  
                 ------############----              
              --------###############-----           
             ---------#################----          
           ----------###################-----        
          -----------####################-----       
         ------------#####################-----      
        -------------######################-----     
        -------------######################-----     
       --------------########   ############-----    
       --------------######## T ############-----    
       ---   ---------#######   ############-----    
       --- P ---------#####################------    
        --   ----------####################-----     
        ---------------####################-----     
         ---------------##################-----      
          --------------#################-----       
           --------------###############-----        
             -------------#############----          
              -------------##########-----           
                 ------------######----              
                     ---------#----                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  4.24e+22   8.20e+21  -3.47e+22 
  8.20e+21   2.23e+20   3.13e+21 
 -3.47e+22   3.13e+21  -4.26e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140410102532/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 170
      DIP = 65
     RAKE = 85
       MW = 4.43
       HS = 28.0

The NDK file is 20140410102532.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2014/04/10 10:25:32:0 -26.83  -71.12  26.4 4.6 Chile
 
 Stations used:
   C.GO02 C.GO03 C.GO04 CX.PB04 CX.PB06 CX.PB07 CX.PB09 
   CX.PB10 CX.PB14 CX.PB15 IU.LCO IU.LVC 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 5.56e+22 dyne-cm
  Mw = 4.43 
  Z  = 28 km
  Plane   Strike  Dip  Rake
   NP1      170    65    85
   NP2        2    25   101
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.56e+22     70      70
    N   0.00e+00      5     172
    P  -5.56e+22     20     264

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     2.23e+20
       Mxy    -3.13e+21
       Mxz     8.20e+21
       Myy    -4.26e+22
       Myz     3.47e+22
       Mzz     4.24e+22
                                                     
                                                     
                                                     
                                                     
                     ---########---                  
                 ------############----              
              --------###############-----           
             ---------#################----          
           ----------###################-----        
          -----------####################-----       
         ------------#####################-----      
        -------------######################-----     
        -------------######################-----     
       --------------########   ############-----    
       --------------######## T ############-----    
       ---   ---------#######   ############-----    
       --- P ---------#####################------    
        --   ----------####################-----     
        ---------------####################-----     
         ---------------##################-----      
          --------------#################-----       
           --------------###############-----        
             -------------#############----          
              -------------##########-----           
                 ------------######----              
                     ---------#----                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  4.24e+22   8.20e+21  -3.47e+22 
  8.20e+21   2.23e+20   3.13e+21 
 -3.47e+22   3.13e+21  -4.26e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140410102532/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   160    45   -90   4.11 0.3616
WVFGRD96    4.0   255    90     5   4.05 0.3069
WVFGRD96    6.0   180    10   -85   4.17 0.3254
WVFGRD96    8.0   180    10   -80   4.27 0.4123
WVFGRD96   10.0   170    15   -90   4.29 0.5103
WVFGRD96   12.0   170    15   -90   4.31 0.5815
WVFGRD96   14.0   175    15   -85   4.32 0.6287
WVFGRD96   16.0   170    15   -90   4.34 0.6600
WVFGRD96   18.0   165    15   -95   4.35 0.6792
WVFGRD96   20.0   165    15   -95   4.36 0.6896
WVFGRD96   22.0   170    65    85   4.39 0.7093
WVFGRD96   24.0   170    65    85   4.40 0.7285
WVFGRD96   26.0   170    65    85   4.42 0.7391
WVFGRD96   28.0   170    65    85   4.43 0.7412
WVFGRD96   30.0   170    65    85   4.44 0.7351
WVFGRD96   32.0   170    65    85   4.45 0.7201
WVFGRD96   34.0   170    65    85   4.46 0.6983
WVFGRD96   36.0   165    70    80   4.48 0.6719
WVFGRD96   38.0   165    70    80   4.48 0.6432
WVFGRD96   40.0   365    20   105   4.61 0.6125
WVFGRD96   42.0   365    20   110   4.63 0.5858
WVFGRD96   44.0   365    20   110   4.63 0.5586
WVFGRD96   46.0   365    20   110   4.64 0.5328
WVFGRD96   48.0   365    20   110   4.65 0.5089
WVFGRD96   50.0   165    75    80   4.65 0.4886
WVFGRD96   52.0   165    75    80   4.66 0.4701
WVFGRD96   54.0   165    75    85   4.67 0.4546
WVFGRD96   56.0   280    80   -65   4.61 0.4414
WVFGRD96   58.0   280    80   -65   4.62 0.4293
WVFGRD96   60.0   280    85   -60   4.62 0.4164
WVFGRD96   62.0   110    20   -60   4.61 0.4040
WVFGRD96   64.0   125    25   -40   4.62 0.3954
WVFGRD96   66.0   125    25   -35   4.62 0.3875
WVFGRD96   68.0   130    25   -30   4.62 0.3799
WVFGRD96   70.0   130    25   -30   4.63 0.3727
WVFGRD96   72.0   135    25   -20   4.63 0.3666
WVFGRD96   74.0   135    25   -20   4.63 0.3610
WVFGRD96   76.0   140    30   -10   4.63 0.3566
WVFGRD96   78.0   135    40    35   4.65 0.3572
WVFGRD96   80.0   135    40    30   4.65 0.3569
WVFGRD96   82.0   140    40    35   4.65 0.3570
WVFGRD96   84.0   140    40    35   4.66 0.3565
WVFGRD96   86.0   145    35    35   4.66 0.3563
WVFGRD96   88.0   145    35    35   4.66 0.3553
WVFGRD96   90.0   150    35    40   4.66 0.3542
WVFGRD96   92.0   150    35    40   4.67 0.3540
WVFGRD96   94.0   150    35    40   4.67 0.3532
WVFGRD96   96.0   155    35    40   4.67 0.3515
WVFGRD96   98.0   150    35    40   4.68 0.3501
WVFGRD96  100.0   155    35    40   4.67 0.3483
WVFGRD96  102.0   155    35    45   4.68 0.3459
WVFGRD96  104.0   155    35    45   4.68 0.3433
WVFGRD96  106.0   160    35    45   4.68 0.3406
WVFGRD96  108.0   160    35    45   4.68 0.3374

The best solution is

WVFGRD96   28.0   170    65    85   4.43 0.7412

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Thu Apr 10 20:34:25 CDT 2014