2014/04/10 10:25:32 -26.832 -71.120 26.4 4.6 Chile
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/04/10 10:25:32:0 -26.83 -71.12 26.4 4.6 Chile Stations used: C.GO02 C.GO03 C.GO04 CX.PB04 CX.PB06 CX.PB07 CX.PB09 CX.PB10 CX.PB14 CX.PB15 IU.LCO IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 5.56e+22 dyne-cm Mw = 4.43 Z = 28 km Plane Strike Dip Rake NP1 170 65 85 NP2 2 25 101 Principal Axes: Axis Value Plunge Azimuth T 5.56e+22 70 70 N 0.00e+00 5 172 P -5.56e+22 20 264 Moment Tensor: (dyne-cm) Component Value Mxx 2.23e+20 Mxy -3.13e+21 Mxz 8.20e+21 Myy -4.26e+22 Myz 3.47e+22 Mzz 4.24e+22 ---########--- ------############---- --------###############----- ---------#################---- ----------###################----- -----------####################----- ------------#####################----- -------------######################----- -------------######################----- --------------######## ############----- --------------######## T ############----- --- ---------####### ############----- --- P ---------#####################------ -- ----------####################----- ---------------####################----- ---------------##################----- --------------#################----- --------------###############----- -------------#############---- -------------##########----- ------------######---- ---------#---- Global CMT Convention Moment Tensor: R T P 4.24e+22 8.20e+21 -3.47e+22 8.20e+21 2.23e+20 3.13e+21 -3.47e+22 3.13e+21 -4.26e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140410102532/index.html |
STK = 170 DIP = 65 RAKE = 85 MW = 4.43 HS = 28.0
The NDK file is 20140410102532.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/04/10 10:25:32:0 -26.83 -71.12 26.4 4.6 Chile Stations used: C.GO02 C.GO03 C.GO04 CX.PB04 CX.PB06 CX.PB07 CX.PB09 CX.PB10 CX.PB14 CX.PB15 IU.LCO IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 5.56e+22 dyne-cm Mw = 4.43 Z = 28 km Plane Strike Dip Rake NP1 170 65 85 NP2 2 25 101 Principal Axes: Axis Value Plunge Azimuth T 5.56e+22 70 70 N 0.00e+00 5 172 P -5.56e+22 20 264 Moment Tensor: (dyne-cm) Component Value Mxx 2.23e+20 Mxy -3.13e+21 Mxz 8.20e+21 Myy -4.26e+22 Myz 3.47e+22 Mzz 4.24e+22 ---########--- ------############---- --------###############----- ---------#################---- ----------###################----- -----------####################----- ------------#####################----- -------------######################----- -------------######################----- --------------######## ############----- --------------######## T ############----- --- ---------####### ############----- --- P ---------#####################------ -- ----------####################----- ---------------####################----- ---------------##################----- --------------#################----- --------------###############----- -------------#############---- -------------##########----- ------------######---- ---------#---- Global CMT Convention Moment Tensor: R T P 4.24e+22 8.20e+21 -3.47e+22 8.20e+21 2.23e+20 3.13e+21 -3.47e+22 3.13e+21 -4.26e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140410102532/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 160 45 -90 4.11 0.3616 WVFGRD96 4.0 255 90 5 4.05 0.3069 WVFGRD96 6.0 180 10 -85 4.17 0.3254 WVFGRD96 8.0 180 10 -80 4.27 0.4123 WVFGRD96 10.0 170 15 -90 4.29 0.5103 WVFGRD96 12.0 170 15 -90 4.31 0.5815 WVFGRD96 14.0 175 15 -85 4.32 0.6287 WVFGRD96 16.0 170 15 -90 4.34 0.6600 WVFGRD96 18.0 165 15 -95 4.35 0.6792 WVFGRD96 20.0 165 15 -95 4.36 0.6896 WVFGRD96 22.0 170 65 85 4.39 0.7093 WVFGRD96 24.0 170 65 85 4.40 0.7285 WVFGRD96 26.0 170 65 85 4.42 0.7391 WVFGRD96 28.0 170 65 85 4.43 0.7412 WVFGRD96 30.0 170 65 85 4.44 0.7351 WVFGRD96 32.0 170 65 85 4.45 0.7201 WVFGRD96 34.0 170 65 85 4.46 0.6983 WVFGRD96 36.0 165 70 80 4.48 0.6719 WVFGRD96 38.0 165 70 80 4.48 0.6432 WVFGRD96 40.0 365 20 105 4.61 0.6125 WVFGRD96 42.0 365 20 110 4.63 0.5858 WVFGRD96 44.0 365 20 110 4.63 0.5586 WVFGRD96 46.0 365 20 110 4.64 0.5328 WVFGRD96 48.0 365 20 110 4.65 0.5089 WVFGRD96 50.0 165 75 80 4.65 0.4886 WVFGRD96 52.0 165 75 80 4.66 0.4701 WVFGRD96 54.0 165 75 85 4.67 0.4546 WVFGRD96 56.0 280 80 -65 4.61 0.4414 WVFGRD96 58.0 280 80 -65 4.62 0.4293 WVFGRD96 60.0 280 85 -60 4.62 0.4164 WVFGRD96 62.0 110 20 -60 4.61 0.4040 WVFGRD96 64.0 125 25 -40 4.62 0.3954 WVFGRD96 66.0 125 25 -35 4.62 0.3875 WVFGRD96 68.0 130 25 -30 4.62 0.3799 WVFGRD96 70.0 130 25 -30 4.63 0.3727 WVFGRD96 72.0 135 25 -20 4.63 0.3666 WVFGRD96 74.0 135 25 -20 4.63 0.3610 WVFGRD96 76.0 140 30 -10 4.63 0.3566 WVFGRD96 78.0 135 40 35 4.65 0.3572 WVFGRD96 80.0 135 40 30 4.65 0.3569 WVFGRD96 82.0 140 40 35 4.65 0.3570 WVFGRD96 84.0 140 40 35 4.66 0.3565 WVFGRD96 86.0 145 35 35 4.66 0.3563 WVFGRD96 88.0 145 35 35 4.66 0.3553 WVFGRD96 90.0 150 35 40 4.66 0.3542 WVFGRD96 92.0 150 35 40 4.67 0.3540 WVFGRD96 94.0 150 35 40 4.67 0.3532 WVFGRD96 96.0 155 35 40 4.67 0.3515 WVFGRD96 98.0 150 35 40 4.68 0.3501 WVFGRD96 100.0 155 35 40 4.67 0.3483 WVFGRD96 102.0 155 35 45 4.68 0.3459 WVFGRD96 104.0 155 35 45 4.68 0.3433 WVFGRD96 106.0 160 35 45 4.68 0.3406 WVFGRD96 108.0 160 35 45 4.68 0.3374
The best solution is
WVFGRD96 28.0 170 65 85 4.43 0.7412
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: