Location

2014/04/09 11:14:45 -20.593 -70.747 15.7 5.4 Chile

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2014/04/09 11:14:45:0 -20.59  -70.75  15.7 5.4 Chile
 
 Stations used:
   CX.MNMCX CX.PATCX CX.PB01 CX.PB02 CX.PB03 CX.PB04 CX.PB05 
   CX.PB06 CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 
   CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 6.03e+23 dyne-cm
  Mw = 5.12 
  Z  = 16 km
  Plane   Strike  Dip  Rake
   NP1      170    65    85
   NP2        2    25   101
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   6.03e+23     70      70
    N   0.00e+00      5     172
    P  -6.03e+23     20     264

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     2.41e+21
       Mxy    -3.39e+22
       Mxz     8.89e+22
       Myy    -4.62e+23
       Myz     3.76e+23
       Mzz     4.60e+23
                                                     
                                                     
                                                     
                                                     
                     ---########---                  
                 ------############----              
              --------###############-----           
             ---------#################----          
           ----------###################-----        
          -----------####################-----       
         ------------#####################-----      
        -------------######################-----     
        -------------######################-----     
       --------------########   ############-----    
       --------------######## T ############-----    
       ---   ---------#######   ############-----    
       --- P ---------#####################------    
        --   ----------####################-----     
        ---------------####################-----     
         ---------------##################-----      
          --------------#################-----       
           --------------###############-----        
             -------------#############----          
              -------------##########-----           
                 ------------######----              
                     ---------#----                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  4.60e+23   8.89e+22  -3.76e+23 
  8.89e+22   2.41e+21   3.39e+22 
 -3.76e+23   3.39e+22  -4.62e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140409111445/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 170
      DIP = 65
     RAKE = 85
       MW = 5.12
       HS = 16.0

The NDK file is 20140409111445.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2014/04/09 11:14:45:0 -20.59  -70.75  15.7 5.4 Chile
 
 Stations used:
   CX.MNMCX CX.PATCX CX.PB01 CX.PB02 CX.PB03 CX.PB04 CX.PB05 
   CX.PB06 CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 
   CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 6.03e+23 dyne-cm
  Mw = 5.12 
  Z  = 16 km
  Plane   Strike  Dip  Rake
   NP1      170    65    85
   NP2        2    25   101
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   6.03e+23     70      70
    N   0.00e+00      5     172
    P  -6.03e+23     20     264

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     2.41e+21
       Mxy    -3.39e+22
       Mxz     8.89e+22
       Myy    -4.62e+23
       Myz     3.76e+23
       Mzz     4.60e+23
                                                     
                                                     
                                                     
                                                     
                     ---########---                  
                 ------############----              
              --------###############-----           
             ---------#################----          
           ----------###################-----        
          -----------####################-----       
         ------------#####################-----      
        -------------######################-----     
        -------------######################-----     
       --------------########   ############-----    
       --------------######## T ############-----    
       ---   ---------#######   ############-----    
       --- P ---------#####################------    
        --   ----------####################-----     
        ---------------####################-----     
         ---------------##################-----      
          --------------#################-----       
           --------------###############-----        
             -------------#############----          
              -------------##########-----           
                 ------------######----              
                     ---------#----                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  4.60e+23   8.89e+22  -3.76e+23 
  8.89e+22   2.41e+21   3.39e+22 
 -3.76e+23   3.39e+22  -4.62e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140409111445/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0    10    40   -90   4.85 0.3774
WVFGRD96    4.0   280    15     5   4.97 0.3326
WVFGRD96    6.0   300    10    35   4.98 0.4733
WVFGRD96    8.0   175    80    90   5.06 0.5658
WVFGRD96   10.0   170    75    85   5.08 0.6554
WVFGRD96   12.0   170    70    85   5.10 0.7209
WVFGRD96   14.0   170    65    85   5.11 0.7591
WVFGRD96   16.0   170    65    85   5.12 0.7727
WVFGRD96   18.0   170    65    80   5.13 0.7675
WVFGRD96   20.0   170    65    80   5.13 0.7506
WVFGRD96   22.0   170    65    85   5.15 0.7283
WVFGRD96   24.0   170    65    85   5.15 0.6985
WVFGRD96   26.0   165    70    75   5.16 0.6665
WVFGRD96   28.0   165    70    75   5.17 0.6327
WVFGRD96   30.0   165    70    75   5.18 0.5970
WVFGRD96   32.0   165    70    75   5.18 0.5591
WVFGRD96   34.0   165    70    75   5.19 0.5202
WVFGRD96   36.0   370    20   110   5.19 0.4833
WVFGRD96   38.0   340    15    80   5.18 0.4503
WVFGRD96   40.0   170    75    90   5.33 0.4298
WVFGRD96   42.0   170    75    90   5.33 0.3945
WVFGRD96   44.0   325    20    60   5.32 0.3608
WVFGRD96   46.0   320    20    55   5.33 0.3312
WVFGRD96   48.0   335    50    55   5.34 0.3097
WVFGRD96   50.0   330    55    45   5.34 0.2919
WVFGRD96   52.0   330    50    45   5.34 0.2765
WVFGRD96   54.0   330    50    45   5.34 0.2633
WVFGRD96   56.0   160    70    45   5.35 0.2509
WVFGRD96   58.0   325    50    40   5.35 0.2415
WVFGRD96   60.0   150    35    50   5.32 0.2396
WVFGRD96   62.0   145    40    45   5.32 0.2360
WVFGRD96   64.0   150    40    45   5.33 0.2390
WVFGRD96   66.0   150    40    45   5.34 0.2378
WVFGRD96   68.0   155    40    50   5.35 0.2431
WVFGRD96   70.0   155    45    50   5.35 0.2435
WVFGRD96   72.0   155    45    50   5.36 0.2428
WVFGRD96   74.0   160    45    55   5.37 0.2491
WVFGRD96   76.0   160    45    55   5.37 0.2511
WVFGRD96   78.0   160    45    55   5.37 0.2505
WVFGRD96   80.0   160    50    55   5.38 0.2570
WVFGRD96   82.0   165    45    70   5.39 0.2579
WVFGRD96   84.0   165    45    70   5.39 0.2600
WVFGRD96   86.0   165    45    70   5.40 0.2621
WVFGRD96   88.0   170    45    75   5.40 0.2667
WVFGRD96   90.0   170    45    75   5.41 0.2681
WVFGRD96   92.0   170    45    75   5.41 0.2693
WVFGRD96   94.0   170    50    75   5.41 0.2719
WVFGRD96   96.0   170    50    75   5.42 0.2733
WVFGRD96   98.0   170    50    75   5.42 0.2764
WVFGRD96  100.0   170    50    75   5.42 0.2770
WVFGRD96  102.0   170    50    75   5.42 0.2782
WVFGRD96  104.0   170    50    75   5.42 0.2784
WVFGRD96  106.0   170    55    75   5.43 0.2795
WVFGRD96  108.0   180    50   -90   5.43 0.2783

The best solution is

WVFGRD96   16.0   170    65    85   5.12 0.7727

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Wed Apr 9 08:40:40 CDT 2014