Location

2014/04/08 10:14:32 -20.486 -70.933 7.0 5.7 Chile

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2014/04/08 10:14:32:0 -20.49  -70.93   7.0 5.7 Chile
 
 Stations used:
   CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB08 CX.PB09 
   CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX 
   GT.LPAZ IU.LVC 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 2.24e+24 dyne-cm
  Mw = 5.50 
  Z  = 16 km
  Plane   Strike  Dip  Rake
   NP1      209    57   103
   NP2        5    35    70
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.24e+24     74     155
    N   0.00e+00     11      22
    P  -2.24e+24     11     289

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -9.13e+22
       Mxy     6.04e+23
       Mxz    -6.88e+23
       Myy    -1.89e+24
       Myz     6.62e+23
       Mzz     1.98e+24
                                                     
                                                     
                                                     
                                                     
                     -----------###                  
                 ------------------#---              
              ------------------####------           
             ----------------#########-----          
           ----------------############------        
          ---------------###############------       
            ------------################-------      
        - P ----------###################-------     
        -   ---------####################-------     
       -------------######################-------    
       ------------#######################-------    
       ------------#########   ###########-------    
       -----------########## T ##########--------    
        ---------###########   ##########-------     
        ---------#######################--------     
         --------#######################-------      
          -------######################-------       
           ------#####################-------        
             ----####################------          
              ---##################-------           
                 -###############------              
                     #########-----                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.98e+24  -6.88e+23  -6.62e+23 
 -6.88e+23  -9.13e+22  -6.04e+23 
 -6.62e+23  -6.04e+23  -1.89e+24 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140408101432/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 5
      DIP = 35
     RAKE = 70
       MW = 5.50
       HS = 16.0

The NDK file is 20140408101432.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
USGSMT
GCMT
 USGS/SLU Moment Tensor Solution
 ENS  2014/04/08 10:14:32:0 -20.49  -70.93   7.0 5.7 Chile
 
 Stations used:
   CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB08 CX.PB09 
   CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX 
   GT.LPAZ IU.LVC 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 2.24e+24 dyne-cm
  Mw = 5.50 
  Z  = 16 km
  Plane   Strike  Dip  Rake
   NP1      209    57   103
   NP2        5    35    70
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.24e+24     74     155
    N   0.00e+00     11      22
    P  -2.24e+24     11     289

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -9.13e+22
       Mxy     6.04e+23
       Mxz    -6.88e+23
       Myy    -1.89e+24
       Myz     6.62e+23
       Mzz     1.98e+24
                                                     
                                                     
                                                     
                                                     
                     -----------###                  
                 ------------------#---              
              ------------------####------           
             ----------------#########-----          
           ----------------############------        
          ---------------###############------       
            ------------################-------      
        - P ----------###################-------     
        -   ---------####################-------     
       -------------######################-------    
       ------------#######################-------    
       ------------#########   ###########-------    
       -----------########## T ##########--------    
        ---------###########   ##########-------     
        ---------#######################--------     
         --------#######################-------      
          -------######################-------       
           ------#####################-------        
             ----####################------          
              ---##################-------           
                 -###############------              
                     #########-----                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.98e+24  -6.88e+23  -6.62e+23 
 -6.88e+23  -9.13e+22  -6.04e+23 
 -6.62e+23  -6.04e+23  -1.89e+24 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140408101432/index.html
	
Regional Moment Tensor (Mwr)

Moment magnitude derived from a moment tensor inversion of 
complete waveforms at regional distances (less than ~8 
degrees), generally used for the analysis of small to 
moderate size earthquakes (typically Mw 3.5-6.0) crust 
or upper mantle earthquakes.

Moment
    2.13e+17 N-m
Magnitude
    5.5
Percent DC
    71%
Depth
    13.0 km
Updated
    2014-04-08 10:52:00 UTC
Author
    us
Catalog
    us
Contributor
    us
Code
    us_c000palw_mwr

Principal Axes
Axis	Value	Plunge	Azimuth
T	1.981	75 	98 
N	0.278	3 	199 
P	-2.260	15 	290 
Nodal Planes
Plane	Strike	Dip	Rake
NP1	197 	60 	86 
NP2	24 	30 	96 

        
April 8, 2014, NEAR COAST OF NORTHERN CHILE, MW=5.6

Howard Koss

CENTROID-MOMENT-TENSOR  SOLUTION
GCMT EVENT:     C201404081014A
DATA: II IU CU MN LD G  GE DK IC
L.P.BODY WAVES: 97S, 152C, T= 40
MANTLE WAVES:   35S,  39C, T=125
SURFACE WAVES: 133S, 235C, T= 50
TIMESTAMP:      Q-20140408085258
CENTROID LOCATION:
ORIGIN TIME:      10:14:38.8 0.1
LAT:20.64S 0.01;LON: 71.16W 0.01
DEP: 12.7  0.4;TRIANG HDUR:  1.5
MOMENT TENSOR: SCALE 10**24 D-CM
RR= 1.610 0.030; TT= 0.041 0.019
PP=-1.650 0.028; RT=-0.838 0.065
RP=-2.360 0.121; TP=-0.359 0.017
PRINCIPAL AXES:
1.(T) VAL=  2.965;PLG=61;AZM=115
2.(N)       0.089;     4;     17
3.(P)      -3.053;    28;    285
BEST DBLE.COUPLE:M0= 3.01*10**24
NP1: STRIKE=  4;DIP=17;SLIP=  76
NP2: STRIKE=198;DIP=73;SLIP=  94

            ---------##
        -------------####--
      -------------########--
    --------------##########---
   --------------############---
  --------------##############---
  --   ---------###############--
 --- P --------################---
 ---   -------#################---
 -------------#######   #######---
 ------------######## T #######---
  -----------########   #######--
  ----------##################---
   ---------#################---
    --------################---
      ------##############---
        ----############---
            ########---
        

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0    25    45   -85   5.25 0.3927
WVFGRD96    4.0   255    10   -40   5.37 0.3503
WVFGRD96    6.0   295    10     0   5.36 0.4701
WVFGRD96    8.0   330    10    35   5.43 0.5430
WVFGRD96   10.0     0    20    65   5.45 0.6101
WVFGRD96   12.0     5    25    70   5.47 0.6705
WVFGRD96   14.0     5    30    70   5.49 0.7070
WVFGRD96   16.0     5    35    70   5.50 0.7179
WVFGRD96   18.0     0    35    65   5.50 0.7080
WVFGRD96   20.0   360    35    65   5.51 0.6845
WVFGRD96   22.0   355    35    60   5.52 0.6572
WVFGRD96   24.0   350    40    50   5.52 0.6237
WVFGRD96   26.0   350    40    50   5.53 0.5882
WVFGRD96   28.0   345    45    40   5.54 0.5517
WVFGRD96   30.0   345    45    40   5.55 0.5151
WVFGRD96   32.0   345    45    40   5.55 0.4770
WVFGRD96   34.0   345    45    40   5.55 0.4381
WVFGRD96   36.0   340    45    35   5.56 0.3995
WVFGRD96   38.0   340    40    35   5.56 0.3630
WVFGRD96   40.0     0    20    70   5.66 0.3428
WVFGRD96   42.0   345    35    40   5.67 0.3124
WVFGRD96   44.0   345    35    40   5.67 0.2870
WVFGRD96   46.0   340    40    35   5.68 0.2637
WVFGRD96   48.0   165    45    25   5.72 0.2465
WVFGRD96   50.0   165    50    25   5.72 0.2328
WVFGRD96   52.0   165    50    25   5.73 0.2186
WVFGRD96   54.0   165    55    20   5.74 0.2072
WVFGRD96   56.0   160    60    15   5.73 0.1967
WVFGRD96   58.0   165    60    20   5.74 0.1876
WVFGRD96   60.0   160    65    15   5.74 0.1806
WVFGRD96   62.0   160    70    15   5.74 0.1742
WVFGRD96   64.0   160    70    15   5.74 0.1706
WVFGRD96   66.0   160    70    15   5.74 0.1675
WVFGRD96   68.0   160    75    15   5.75 0.1658
WVFGRD96   70.0   330    70    20   5.73 0.1644
WVFGRD96   72.0   330    70    20   5.73 0.1650
WVFGRD96   74.0   330    65    20   5.73 0.1660
WVFGRD96   76.0   330    65    20   5.74 0.1669
WVFGRD96   78.0   330    60    20   5.74 0.1680
WVFGRD96   80.0   330    60    20   5.75 0.1694
WVFGRD96   82.0   330    55    20   5.75 0.1712
WVFGRD96   84.0    15    50    95   5.73 0.1743
WVFGRD96   86.0    15    50    95   5.74 0.1768
WVFGRD96   88.0    15    50    95   5.75 0.1881
WVFGRD96   90.0    10    45    90   5.76 0.1931
WVFGRD96   92.0    10    45    90   5.76 0.1963
WVFGRD96   94.0   360    45    75   5.77 0.2072
WVFGRD96   96.0   360    45    75   5.77 0.2116
WVFGRD96   98.0   355    45    70   5.78 0.2141
WVFGRD96  100.0   355    45    70   5.79 0.2230
WVFGRD96  102.0   365    40    80   5.79 0.2261
WVFGRD96  104.0   -15    50    50   5.80 0.2298
WVFGRD96  106.0   -15    50    50   5.80 0.2348
WVFGRD96  108.0   -15    50    50   5.81 0.2379

The best solution is

WVFGRD96   16.0     5    35    70   5.50 0.7179

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Tue Apr 8 08:56:13 CDT 2014