2014/04/08 10:14:32 -20.486 -70.933 7.0 5.7 Chile
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/04/08 10:14:32:0 -20.49 -70.93 7.0 5.7 Chile Stations used: CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 2.24e+24 dyne-cm Mw = 5.50 Z = 16 km Plane Strike Dip Rake NP1 209 57 103 NP2 5 35 70 Principal Axes: Axis Value Plunge Azimuth T 2.24e+24 74 155 N 0.00e+00 11 22 P -2.24e+24 11 289 Moment Tensor: (dyne-cm) Component Value Mxx -9.13e+22 Mxy 6.04e+23 Mxz -6.88e+23 Myy -1.89e+24 Myz 6.62e+23 Mzz 1.98e+24 -----------### ------------------#--- ------------------####------ ----------------#########----- ----------------############------ ---------------###############------ ------------################------- - P ----------###################------- - ---------####################------- -------------######################------- ------------#######################------- ------------######### ###########------- -----------########## T ##########-------- ---------########### ##########------- ---------#######################-------- --------#######################------- -------######################------- ------#####################------- ----####################------ ---##################------- -###############------ #########----- Global CMT Convention Moment Tensor: R T P 1.98e+24 -6.88e+23 -6.62e+23 -6.88e+23 -9.13e+22 -6.04e+23 -6.62e+23 -6.04e+23 -1.89e+24 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140408101432/index.html |
STK = 5 DIP = 35 RAKE = 70 MW = 5.50 HS = 16.0
The NDK file is 20140408101432.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/04/08 10:14:32:0 -20.49 -70.93 7.0 5.7 Chile Stations used: CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 2.24e+24 dyne-cm Mw = 5.50 Z = 16 km Plane Strike Dip Rake NP1 209 57 103 NP2 5 35 70 Principal Axes: Axis Value Plunge Azimuth T 2.24e+24 74 155 N 0.00e+00 11 22 P -2.24e+24 11 289 Moment Tensor: (dyne-cm) Component Value Mxx -9.13e+22 Mxy 6.04e+23 Mxz -6.88e+23 Myy -1.89e+24 Myz 6.62e+23 Mzz 1.98e+24 -----------### ------------------#--- ------------------####------ ----------------#########----- ----------------############------ ---------------###############------ ------------################------- - P ----------###################------- - ---------####################------- -------------######################------- ------------#######################------- ------------######### ###########------- -----------########## T ##########-------- ---------########### ##########------- ---------#######################-------- --------#######################------- -------######################------- ------#####################------- ----####################------ ---##################------- -###############------ #########----- Global CMT Convention Moment Tensor: R T P 1.98e+24 -6.88e+23 -6.62e+23 -6.88e+23 -9.13e+22 -6.04e+23 -6.62e+23 -6.04e+23 -1.89e+24 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140408101432/index.html |
Regional Moment Tensor (Mwr) Moment magnitude derived from a moment tensor inversion of complete waveforms at regional distances (less than ~8 degrees), generally used for the analysis of small to moderate size earthquakes (typically Mw 3.5-6.0) crust or upper mantle earthquakes. Moment 2.13e+17 N-m Magnitude 5.5 Percent DC 71% Depth 13.0 km Updated 2014-04-08 10:52:00 UTC Author us Catalog us Contributor us Code us_c000palw_mwr Principal Axes Axis Value Plunge Azimuth T 1.981 75 98 N 0.278 3 199 P -2.260 15 290 Nodal Planes Plane Strike Dip Rake NP1 197 60 86 NP2 24 30 96 | April 8, 2014, NEAR COAST OF NORTHERN CHILE, MW=5.6 Howard Koss CENTROID-MOMENT-TENSOR SOLUTION GCMT EVENT: C201404081014A DATA: II IU CU MN LD G GE DK IC L.P.BODY WAVES: 97S, 152C, T= 40 MANTLE WAVES: 35S, 39C, T=125 SURFACE WAVES: 133S, 235C, T= 50 TIMESTAMP: Q-20140408085258 CENTROID LOCATION: ORIGIN TIME: 10:14:38.8 0.1 LAT:20.64S 0.01;LON: 71.16W 0.01 DEP: 12.7 0.4;TRIANG HDUR: 1.5 MOMENT TENSOR: SCALE 10**24 D-CM RR= 1.610 0.030; TT= 0.041 0.019 PP=-1.650 0.028; RT=-0.838 0.065 RP=-2.360 0.121; TP=-0.359 0.017 PRINCIPAL AXES: 1.(T) VAL= 2.965;PLG=61;AZM=115 2.(N) 0.089; 4; 17 3.(P) -3.053; 28; 285 BEST DBLE.COUPLE:M0= 3.01*10**24 NP1: STRIKE= 4;DIP=17;SLIP= 76 NP2: STRIKE=198;DIP=73;SLIP= 94 ---------## -------------####-- -------------########-- --------------##########--- --------------############--- --------------##############--- -- ---------###############-- --- P --------################--- --- -------#################--- -------------####### #######--- ------------######## T #######--- -----------######## #######-- ----------##################--- ---------#################--- --------################--- ------##############--- ----############--- ########--- |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 25 45 -85 5.25 0.3927 WVFGRD96 4.0 255 10 -40 5.37 0.3503 WVFGRD96 6.0 295 10 0 5.36 0.4701 WVFGRD96 8.0 330 10 35 5.43 0.5430 WVFGRD96 10.0 0 20 65 5.45 0.6101 WVFGRD96 12.0 5 25 70 5.47 0.6705 WVFGRD96 14.0 5 30 70 5.49 0.7070 WVFGRD96 16.0 5 35 70 5.50 0.7179 WVFGRD96 18.0 0 35 65 5.50 0.7080 WVFGRD96 20.0 360 35 65 5.51 0.6845 WVFGRD96 22.0 355 35 60 5.52 0.6572 WVFGRD96 24.0 350 40 50 5.52 0.6237 WVFGRD96 26.0 350 40 50 5.53 0.5882 WVFGRD96 28.0 345 45 40 5.54 0.5517 WVFGRD96 30.0 345 45 40 5.55 0.5151 WVFGRD96 32.0 345 45 40 5.55 0.4770 WVFGRD96 34.0 345 45 40 5.55 0.4381 WVFGRD96 36.0 340 45 35 5.56 0.3995 WVFGRD96 38.0 340 40 35 5.56 0.3630 WVFGRD96 40.0 0 20 70 5.66 0.3428 WVFGRD96 42.0 345 35 40 5.67 0.3124 WVFGRD96 44.0 345 35 40 5.67 0.2870 WVFGRD96 46.0 340 40 35 5.68 0.2637 WVFGRD96 48.0 165 45 25 5.72 0.2465 WVFGRD96 50.0 165 50 25 5.72 0.2328 WVFGRD96 52.0 165 50 25 5.73 0.2186 WVFGRD96 54.0 165 55 20 5.74 0.2072 WVFGRD96 56.0 160 60 15 5.73 0.1967 WVFGRD96 58.0 165 60 20 5.74 0.1876 WVFGRD96 60.0 160 65 15 5.74 0.1806 WVFGRD96 62.0 160 70 15 5.74 0.1742 WVFGRD96 64.0 160 70 15 5.74 0.1706 WVFGRD96 66.0 160 70 15 5.74 0.1675 WVFGRD96 68.0 160 75 15 5.75 0.1658 WVFGRD96 70.0 330 70 20 5.73 0.1644 WVFGRD96 72.0 330 70 20 5.73 0.1650 WVFGRD96 74.0 330 65 20 5.73 0.1660 WVFGRD96 76.0 330 65 20 5.74 0.1669 WVFGRD96 78.0 330 60 20 5.74 0.1680 WVFGRD96 80.0 330 60 20 5.75 0.1694 WVFGRD96 82.0 330 55 20 5.75 0.1712 WVFGRD96 84.0 15 50 95 5.73 0.1743 WVFGRD96 86.0 15 50 95 5.74 0.1768 WVFGRD96 88.0 15 50 95 5.75 0.1881 WVFGRD96 90.0 10 45 90 5.76 0.1931 WVFGRD96 92.0 10 45 90 5.76 0.1963 WVFGRD96 94.0 360 45 75 5.77 0.2072 WVFGRD96 96.0 360 45 75 5.77 0.2116 WVFGRD96 98.0 355 45 70 5.78 0.2141 WVFGRD96 100.0 355 45 70 5.79 0.2230 WVFGRD96 102.0 365 40 80 5.79 0.2261 WVFGRD96 104.0 -15 50 50 5.80 0.2298 WVFGRD96 106.0 -15 50 50 5.80 0.2348 WVFGRD96 108.0 -15 50 50 5.81 0.2379
The best solution is
WVFGRD96 16.0 5 35 70 5.50 0.7179
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: