Location

2014/04/07 14:03:42 -20.145 -70.942 7.3 5.1 Chile

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2014/04/07 14:03:42:0 -20.15  -70.94   7.3 5.1 Chile
 
 Stations used:
   CX.MNMCX CX.PATCX CX.PB04 CX.PB07 CX.PB08 CX.PB09 CX.PB11 
   CX.PB12 CX.PB16 CX.PSGCX 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 1.27e+23 dyne-cm
  Mw = 4.67 
  Z  = 16 km
  Plane   Strike  Dip  Rake
   NP1      280    80    65
   NP2      170    27   157
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.27e+23     49     163
    N   0.00e+00     25     285
    P  -1.27e+23     31      30

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -2.02e+22
       Mxy    -5.66e+22
       Mxz    -1.08e+23
       Myy    -1.93e+22
       Myz    -9.63e+21
       Mzz     3.95e+22
                                                     
                                                     
                                                     
                                                     
                     #-------------                  
                 ###-------------------              
              ####------------------------           
             ###------------------   ------          
           ####------------------- P --------        
          ####--------------------   ---------       
         #####---------------------------------      
        #####-----------------------------------     
        #####-----------------------------------     
       ------##############----------------------    
       -----########################-------------    
       ------#############################-------    
       ------##################################--    
        -----###################################     
        ------##################################     
         ------###############   ##############      
          ------############## T #############       
           ------#############   ############        
             -----#########################          
              ------######################           
                 ------################              
                     ------########                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  3.95e+22  -1.08e+23   9.63e+21 
 -1.08e+23  -2.02e+22   5.66e+22 
  9.63e+21   5.66e+22  -1.93e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140407140342/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 280
      DIP = 80
     RAKE = 65
       MW = 4.67
       HS = 16.0

The NDK file is 20140407140342.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2014/04/07 14:03:42:0 -20.15  -70.94   7.3 5.1 Chile
 
 Stations used:
   CX.MNMCX CX.PATCX CX.PB04 CX.PB07 CX.PB08 CX.PB09 CX.PB11 
   CX.PB12 CX.PB16 CX.PSGCX 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 1.27e+23 dyne-cm
  Mw = 4.67 
  Z  = 16 km
  Plane   Strike  Dip  Rake
   NP1      280    80    65
   NP2      170    27   157
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.27e+23     49     163
    N   0.00e+00     25     285
    P  -1.27e+23     31      30

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -2.02e+22
       Mxy    -5.66e+22
       Mxz    -1.08e+23
       Myy    -1.93e+22
       Myz    -9.63e+21
       Mzz     3.95e+22
                                                     
                                                     
                                                     
                                                     
                     #-------------                  
                 ###-------------------              
              ####------------------------           
             ###------------------   ------          
           ####------------------- P --------        
          ####--------------------   ---------       
         #####---------------------------------      
        #####-----------------------------------     
        #####-----------------------------------     
       ------##############----------------------    
       -----########################-------------    
       ------#############################-------    
       ------##################################--    
        -----###################################     
        ------##################################     
         ------###############   ##############      
          ------############## T #############       
           ------#############   ############        
             -----#########################          
              ------######################           
                 ------################              
                     ------########                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  3.95e+22  -1.08e+23   9.63e+21 
 -1.08e+23  -2.02e+22   5.66e+22 
  9.63e+21   5.66e+22  -1.93e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140407140342/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   125    45    95   4.43 0.3356
WVFGRD96    4.0   280    60    30   4.47 0.2698
WVFGRD96    6.0    95    90   -65   4.55 0.3351
WVFGRD96    8.0   280    85    75   4.63 0.3918
WVFGRD96   10.0   285    80    75   4.63 0.4394
WVFGRD96   12.0   280    80    70   4.65 0.4646
WVFGRD96   14.0   280    80    70   4.66 0.4752
WVFGRD96   16.0   280    80    65   4.67 0.4757
WVFGRD96   18.0   280    85    65   4.68 0.4701
WVFGRD96   20.0   280    85    65   4.69 0.4596
WVFGRD96   22.0   280    85    70   4.71 0.4459
WVFGRD96   24.0   280    85    70   4.72 0.4301
WVFGRD96   26.0   280    85    70   4.73 0.4117
WVFGRD96   28.0   275    85    70   4.75 0.3923
WVFGRD96   30.0   275    85    70   4.76 0.3716
WVFGRD96   32.0   275    85    70   4.76 0.3499
WVFGRD96   34.0   275    85    70   4.77 0.3277
WVFGRD96   36.0   275    85    65   4.77 0.3061
WVFGRD96   38.0   275    80    70   4.76 0.2861
WVFGRD96   40.0    90    90   -80   4.91 0.2695
WVFGRD96   42.0   175    35   -10   4.93 0.2675
WVFGRD96   44.0   170    35   -15   4.94 0.2628
WVFGRD96   46.0   170    40   -15   4.95 0.2572
WVFGRD96   48.0   170    40   -10   4.97 0.2510
WVFGRD96   50.0   170    40   -10   4.98 0.2429
WVFGRD96   52.0   170    45   -10   4.98 0.2356
WVFGRD96   54.0   170    45   -15   4.98 0.2264
WVFGRD96   56.0   175    50    -5   5.00 0.2186
WVFGRD96   58.0   175    50    -5   5.00 0.2114
WVFGRD96   60.0     0    80   -30   4.97 0.2063
WVFGRD96   62.0     0    80   -30   4.97 0.2041
WVFGRD96   64.0     0    80   -30   4.97 0.1996
WVFGRD96   66.0     0    75   -30   4.98 0.1971
WVFGRD96   68.0     0    75   -30   4.98 0.1979
WVFGRD96   70.0     0    75   -30   4.98 0.1985
WVFGRD96   72.0     0    75   -30   4.98 0.1972
WVFGRD96   74.0     0    70   -30   4.98 0.1976
WVFGRD96   76.0     0    70   -30   4.99 0.1983
WVFGRD96   78.0     0    70   -30   4.99 0.1977
WVFGRD96   80.0     0    70   -30   4.99 0.1989
WVFGRD96   82.0     0    70   -30   4.99 0.1983
WVFGRD96   84.0     0    70   -30   4.99 0.1993
WVFGRD96   86.0     0    70   -30   4.99 0.2002
WVFGRD96   88.0     0    70   -30   4.99 0.1996
WVFGRD96   90.0     0    70   -30   4.99 0.1998
WVFGRD96   92.0     0    65   -30   4.99 0.1988
WVFGRD96   94.0     0    65   -30   4.99 0.1990
WVFGRD96   96.0     0    65   -30   4.99 0.1988
WVFGRD96   98.0     0    65   -30   4.99 0.1989
WVFGRD96  100.0     0    65   -30   4.99 0.1983
WVFGRD96  102.0     0    65   -30   5.00 0.1984
WVFGRD96  104.0     0    65   -30   5.00 0.1984
WVFGRD96  106.0     0    65   -30   5.00 0.1987
WVFGRD96  108.0     0    65   -30   5.00 0.1988

The best solution is

WVFGRD96   16.0   280    80    65   4.67 0.4757

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Mon Apr 7 09:56:27 CDT 2014