2014/04/07 13:43:21 -20.218 -70.822 10.0 5.8 Chile
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/04/07 13:43:21:0 -20.22 -70.82 10.0 5.8 Chile Stations used: CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 4.03e+24 dyne-cm Mw = 5.67 Z = 14 km Plane Strike Dip Rake NP1 288 63 121 NP2 55 40 45 Principal Axes: Axis Value Plunge Azimuth T 4.03e+24 60 243 N 0.00e+00 27 92 P -4.03e+24 13 356 Moment Tensor: (dyne-cm) Component Value Mxx -3.60e+24 Mxy 6.92e+23 Mxz -1.66e+24 Myy 7.97e+23 Myz -1.50e+24 Mzz 2.80e+24 ---- ------- -------- P ----------- ----------- -------------- ------------------------------ ---------------------------------- -----------------------------------# -------#####------------------------## -#####################---------------### ###########################----------### ################################------#### ##################################---##### ############## ###################-##### ############## T ##################---#### ############# #################------# ###############################--------- ############################---------- #########################----------- #####################------------- --############---------------- ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 2.80e+24 -1.66e+24 1.50e+24 -1.66e+24 -3.60e+24 -6.92e+23 1.50e+24 -6.92e+23 7.97e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140407134321/index.html |
STK = 55 DIP = 40 RAKE = 45 MW = 5.67 HS = 14.0
The NDK file is 20140407134321.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/04/07 13:43:21:0 -20.22 -70.82 10.0 5.8 Chile Stations used: CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 4.03e+24 dyne-cm Mw = 5.67 Z = 14 km Plane Strike Dip Rake NP1 288 63 121 NP2 55 40 45 Principal Axes: Axis Value Plunge Azimuth T 4.03e+24 60 243 N 0.00e+00 27 92 P -4.03e+24 13 356 Moment Tensor: (dyne-cm) Component Value Mxx -3.60e+24 Mxy 6.92e+23 Mxz -1.66e+24 Myy 7.97e+23 Myz -1.50e+24 Mzz 2.80e+24 ---- ------- -------- P ----------- ----------- -------------- ------------------------------ ---------------------------------- -----------------------------------# -------#####------------------------## -#####################---------------### ###########################----------### ################################------#### ##################################---##### ############## ###################-##### ############## T ##################---#### ############# #################------# ###############################--------- ############################---------- #########################----------- #####################------------- --############---------------- ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 2.80e+24 -1.66e+24 1.50e+24 -1.66e+24 -3.60e+24 -6.92e+23 1.50e+24 -6.92e+23 7.97e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140407134321/index.html |
Body-wave Moment Tensor (Mwb) Moment magnitude derived from a moment tensor inversion of long-period (~10 - 100 s) body-waves (P-, SH- ) at teleseismic distances (~30 to ~90 degrees). Moment 5.56e+17 N-m Magnitude 5.8 Percent DC 27% Depth 6.0 km Updated 2014-04-07 14:07:25 UTC Author us Catalog us Contributor us Code us_c000p8us_mwb Principal Axes Axis Value Plunge Azimuth T 4.546 56 208 N 1.651 18 90 P -6.196 28 350 Nodal Planes Plane Strike Dip Rake NP1 275 76 109 NP2 41 23 39 |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 85 45 75 5.43 0.4617 WVFGRD96 4.0 40 45 15 5.47 0.4650 WVFGRD96 6.0 30 40 -5 5.52 0.5503 WVFGRD96 8.0 45 30 30 5.62 0.6255 WVFGRD96 10.0 55 35 45 5.64 0.7022 WVFGRD96 12.0 60 35 55 5.66 0.7492 WVFGRD96 14.0 55 40 45 5.67 0.7661 WVFGRD96 16.0 50 45 40 5.67 0.7630 WVFGRD96 18.0 50 45 40 5.68 0.7472 WVFGRD96 20.0 45 50 30 5.69 0.7234 WVFGRD96 22.0 45 50 30 5.70 0.6979 WVFGRD96 24.0 45 50 30 5.71 0.6651 WVFGRD96 26.0 45 50 30 5.72 0.6289 WVFGRD96 28.0 45 50 25 5.72 0.5913 WVFGRD96 30.0 45 50 25 5.73 0.5517 WVFGRD96 32.0 45 50 25 5.73 0.5110 WVFGRD96 34.0 30 65 -20 5.74 0.4730 WVFGRD96 36.0 220 60 25 5.76 0.4429 WVFGRD96 38.0 220 65 25 5.77 0.4186 WVFGRD96 40.0 225 50 30 5.85 0.4038 WVFGRD96 42.0 225 55 30 5.86 0.3877 WVFGRD96 44.0 225 55 30 5.87 0.3710 WVFGRD96 46.0 225 55 25 5.87 0.3550 WVFGRD96 48.0 225 55 25 5.88 0.3405 WVFGRD96 50.0 225 60 25 5.89 0.3275 WVFGRD96 52.0 225 60 25 5.89 0.3154 WVFGRD96 54.0 205 55 -30 5.90 0.3035 WVFGRD96 56.0 205 65 -10 5.91 0.2959 WVFGRD96 58.0 205 65 -10 5.92 0.2906 WVFGRD96 60.0 205 65 -10 5.92 0.2825 WVFGRD96 62.0 120 65 -30 5.94 0.2776 WVFGRD96 64.0 125 65 -30 5.94 0.2816 WVFGRD96 66.0 205 65 -30 5.92 0.2729 WVFGRD96 68.0 120 75 -30 5.96 0.2763 WVFGRD96 70.0 120 75 -30 5.96 0.2755 WVFGRD96 72.0 120 75 -30 5.97 0.2812 WVFGRD96 74.0 120 80 -25 5.97 0.2758 WVFGRD96 76.0 120 80 -25 5.98 0.2813 WVFGRD96 78.0 120 80 -25 5.98 0.2823 WVFGRD96 80.0 120 80 -20 5.98 0.2829 WVFGRD96 82.0 120 80 -20 5.99 0.2855 WVFGRD96 84.0 120 80 -20 6.00 0.2906 WVFGRD96 86.0 120 80 -20 6.00 0.2879 WVFGRD96 88.0 120 85 -20 6.00 0.2915 WVFGRD96 90.0 120 85 -20 6.01 0.2934 WVFGRD96 92.0 120 85 -20 6.01 0.2928 WVFGRD96 94.0 120 85 -20 6.02 0.2967 WVFGRD96 96.0 300 90 15 6.01 0.2982 WVFGRD96 98.0 300 90 15 6.01 0.2971 WVFGRD96 100.0 120 85 -15 6.03 0.3032 WVFGRD96 102.0 175 70 -85 6.04 0.3014 WVFGRD96 104.0 350 20 -95 6.04 0.3055 WVFGRD96 106.0 350 20 -95 6.04 0.3079 WVFGRD96 108.0 60 55 35 5.95 0.3106
The best solution is
WVFGRD96 14.0 55 40 45 5.67 0.7661
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: