Location

2014/04/07 13:43:21 -20.218 -70.822 10.0 5.8 Chile

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2014/04/07 13:43:21:0 -20.22  -70.82  10.0 5.8 Chile
 
 Stations used:
   CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB08 CX.PB09 
   CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX 
   GT.LPAZ IU.LVC 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 4.03e+24 dyne-cm
  Mw = 5.67 
  Z  = 14 km
  Plane   Strike  Dip  Rake
   NP1      288    63   121
   NP2       55    40    45
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.03e+24     60     243
    N   0.00e+00     27      92
    P  -4.03e+24     13     356

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -3.60e+24
       Mxy     6.92e+23
       Mxz    -1.66e+24
       Myy     7.97e+23
       Myz    -1.50e+24
       Mzz     2.80e+24
                                                     
                                                     
                                                     
                                                     
                     ----   -------                  
                 -------- P -----------              
              -----------   --------------           
             ------------------------------          
           ----------------------------------        
          -----------------------------------#       
         -------#####------------------------##      
        -#####################---------------###     
        ###########################----------###     
       ################################------####    
       ##################################---#####    
       ##############   ###################-#####    
       ############## T ##################---####    
        #############   #################------#     
        ###############################---------     
         ############################----------      
          #########################-----------       
           #####################-------------        
             --############----------------          
              ----------------------------           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  2.80e+24  -1.66e+24   1.50e+24 
 -1.66e+24  -3.60e+24  -6.92e+23 
  1.50e+24  -6.92e+23   7.97e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140407134321/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 55
      DIP = 40
     RAKE = 45
       MW = 5.67
       HS = 14.0

The NDK file is 20140407134321.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
USGSMT
 USGS/SLU Moment Tensor Solution
 ENS  2014/04/07 13:43:21:0 -20.22  -70.82  10.0 5.8 Chile
 
 Stations used:
   CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB08 CX.PB09 
   CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX 
   GT.LPAZ IU.LVC 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 4.03e+24 dyne-cm
  Mw = 5.67 
  Z  = 14 km
  Plane   Strike  Dip  Rake
   NP1      288    63   121
   NP2       55    40    45
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.03e+24     60     243
    N   0.00e+00     27      92
    P  -4.03e+24     13     356

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -3.60e+24
       Mxy     6.92e+23
       Mxz    -1.66e+24
       Myy     7.97e+23
       Myz    -1.50e+24
       Mzz     2.80e+24
                                                     
                                                     
                                                     
                                                     
                     ----   -------                  
                 -------- P -----------              
              -----------   --------------           
             ------------------------------          
           ----------------------------------        
          -----------------------------------#       
         -------#####------------------------##      
        -#####################---------------###     
        ###########################----------###     
       ################################------####    
       ##################################---#####    
       ##############   ###################-#####    
       ############## T ##################---####    
        #############   #################------#     
        ###############################---------     
         ############################----------      
          #########################-----------       
           #####################-------------        
             --############----------------          
              ----------------------------           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  2.80e+24  -1.66e+24   1.50e+24 
 -1.66e+24  -3.60e+24  -6.92e+23 
  1.50e+24  -6.92e+23   7.97e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140407134321/index.html
	
Body-wave Moment Tensor (Mwb)

Moment magnitude derived from a moment tensor inversion of long-period 
(~10 - 100 s) body-waves (P-, SH- ) at teleseismic distances (~30 to ~90 degrees).

Moment
    5.56e+17 N-m
Magnitude
    5.8
Percent DC
    27%
Depth
    6.0 km
Updated
    2014-04-07 14:07:25 UTC
Author
    us
Catalog
    us
Contributor
    us
Code
    us_c000p8us_mwb

Principal Axes
Axis	Value	Plunge	Azimuth
T	4.546	56	208
N	1.651	18	90
P	-6.196	28	350
Nodal Planes
Plane	Strike	Dip	Rake
NP1	275	76	109
NP2	41	23	39

        

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0    85    45    75   5.43 0.4617
WVFGRD96    4.0    40    45    15   5.47 0.4650
WVFGRD96    6.0    30    40    -5   5.52 0.5503
WVFGRD96    8.0    45    30    30   5.62 0.6255
WVFGRD96   10.0    55    35    45   5.64 0.7022
WVFGRD96   12.0    60    35    55   5.66 0.7492
WVFGRD96   14.0    55    40    45   5.67 0.7661
WVFGRD96   16.0    50    45    40   5.67 0.7630
WVFGRD96   18.0    50    45    40   5.68 0.7472
WVFGRD96   20.0    45    50    30   5.69 0.7234
WVFGRD96   22.0    45    50    30   5.70 0.6979
WVFGRD96   24.0    45    50    30   5.71 0.6651
WVFGRD96   26.0    45    50    30   5.72 0.6289
WVFGRD96   28.0    45    50    25   5.72 0.5913
WVFGRD96   30.0    45    50    25   5.73 0.5517
WVFGRD96   32.0    45    50    25   5.73 0.5110
WVFGRD96   34.0    30    65   -20   5.74 0.4730
WVFGRD96   36.0   220    60    25   5.76 0.4429
WVFGRD96   38.0   220    65    25   5.77 0.4186
WVFGRD96   40.0   225    50    30   5.85 0.4038
WVFGRD96   42.0   225    55    30   5.86 0.3877
WVFGRD96   44.0   225    55    30   5.87 0.3710
WVFGRD96   46.0   225    55    25   5.87 0.3550
WVFGRD96   48.0   225    55    25   5.88 0.3405
WVFGRD96   50.0   225    60    25   5.89 0.3275
WVFGRD96   52.0   225    60    25   5.89 0.3154
WVFGRD96   54.0   205    55   -30   5.90 0.3035
WVFGRD96   56.0   205    65   -10   5.91 0.2959
WVFGRD96   58.0   205    65   -10   5.92 0.2906
WVFGRD96   60.0   205    65   -10   5.92 0.2825
WVFGRD96   62.0   120    65   -30   5.94 0.2776
WVFGRD96   64.0   125    65   -30   5.94 0.2816
WVFGRD96   66.0   205    65   -30   5.92 0.2729
WVFGRD96   68.0   120    75   -30   5.96 0.2763
WVFGRD96   70.0   120    75   -30   5.96 0.2755
WVFGRD96   72.0   120    75   -30   5.97 0.2812
WVFGRD96   74.0   120    80   -25   5.97 0.2758
WVFGRD96   76.0   120    80   -25   5.98 0.2813
WVFGRD96   78.0   120    80   -25   5.98 0.2823
WVFGRD96   80.0   120    80   -20   5.98 0.2829
WVFGRD96   82.0   120    80   -20   5.99 0.2855
WVFGRD96   84.0   120    80   -20   6.00 0.2906
WVFGRD96   86.0   120    80   -20   6.00 0.2879
WVFGRD96   88.0   120    85   -20   6.00 0.2915
WVFGRD96   90.0   120    85   -20   6.01 0.2934
WVFGRD96   92.0   120    85   -20   6.01 0.2928
WVFGRD96   94.0   120    85   -20   6.02 0.2967
WVFGRD96   96.0   300    90    15   6.01 0.2982
WVFGRD96   98.0   300    90    15   6.01 0.2971
WVFGRD96  100.0   120    85   -15   6.03 0.3032
WVFGRD96  102.0   175    70   -85   6.04 0.3014
WVFGRD96  104.0   350    20   -95   6.04 0.3055
WVFGRD96  106.0   350    20   -95   6.04 0.3079
WVFGRD96  108.0    60    55    35   5.95 0.3106

The best solution is

WVFGRD96   14.0    55    40    45   5.67 0.7661

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Mon Apr 7 10:23:15 CDT 2014