2014/04/07 10:41:35 -20.509 -70.983 14.9 4.8 Chile
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/04/07 10:41:35:0 -20.51 -70.98 14.9 4.8 Chile Stations used: CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 7.33e+22 dyne-cm Mw = 4.51 Z = 18 km Plane Strike Dip Rake NP1 155 70 75 NP2 13 25 125 Principal Axes: Axis Value Plunge Azimuth T 7.33e+22 62 42 N 0.00e+00 14 160 P -7.33e+22 24 257 Moment Tensor: (dyne-cm) Component Value Mxx 5.53e+21 Mxy -5.97e+21 Mxz 2.88e+22 Myy -5.10e+22 Myz 4.64e+22 Mzz 4.55e+22 #############- --##################-- -----####################--- ------#####################--- --------######################---- ---------#######################---- -----------#######################---- ------------########### #########----- -------------########## T ##########---- --------------########## ##########----- ---------------######################----- ----------------#####################----- ---- ----------####################----- --- P -----------##################----- --- ------------#################----- ------------------###############----- ------------------#############----- ------------------##########------ ------------------#######----- -------------------###------ ----------------##---- --------###### Global CMT Convention Moment Tensor: R T P 4.55e+22 2.88e+22 -4.64e+22 2.88e+22 5.53e+21 5.97e+21 -4.64e+22 5.97e+21 -5.10e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140407104135/index.html |
STK = 155 DIP = 70 RAKE = 75 MW = 4.51 HS = 18.0
The NDK file is 20140407104135.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/04/07 10:41:35:0 -20.51 -70.98 14.9 4.8 Chile Stations used: CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 7.33e+22 dyne-cm Mw = 4.51 Z = 18 km Plane Strike Dip Rake NP1 155 70 75 NP2 13 25 125 Principal Axes: Axis Value Plunge Azimuth T 7.33e+22 62 42 N 0.00e+00 14 160 P -7.33e+22 24 257 Moment Tensor: (dyne-cm) Component Value Mxx 5.53e+21 Mxy -5.97e+21 Mxz 2.88e+22 Myy -5.10e+22 Myz 4.64e+22 Mzz 4.55e+22 #############- --##################-- -----####################--- ------#####################--- --------######################---- ---------#######################---- -----------#######################---- ------------########### #########----- -------------########## T ##########---- --------------########## ##########----- ---------------######################----- ----------------#####################----- ---- ----------####################----- --- P -----------##################----- --- ------------#################----- ------------------###############----- ------------------#############----- ------------------##########------ ------------------#######----- -------------------###------ ----------------##---- --------###### Global CMT Convention Moment Tensor: R T P 4.55e+22 2.88e+22 -4.64e+22 2.88e+22 5.53e+21 5.97e+21 -4.64e+22 5.97e+21 -5.10e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140407104135/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 160 45 -90 4.27 0.4432 WVFGRD96 4.0 340 80 -70 4.39 0.3797 WVFGRD96 6.0 335 85 -75 4.39 0.5172 WVFGRD96 8.0 335 85 -75 4.46 0.5992 WVFGRD96 10.0 155 85 75 4.46 0.6668 WVFGRD96 12.0 155 75 75 4.48 0.7185 WVFGRD96 14.0 155 75 75 4.49 0.7553 WVFGRD96 16.0 155 70 75 4.50 0.7748 WVFGRD96 18.0 155 70 75 4.51 0.7779 WVFGRD96 20.0 155 70 70 4.52 0.7686 WVFGRD96 22.0 150 70 70 4.54 0.7523 WVFGRD96 24.0 150 70 70 4.55 0.7302 WVFGRD96 26.0 150 70 70 4.56 0.7036 WVFGRD96 28.0 150 70 70 4.57 0.6733 WVFGRD96 30.0 150 70 65 4.58 0.6401 WVFGRD96 32.0 150 70 70 4.58 0.6048 WVFGRD96 34.0 150 70 65 4.59 0.5679 WVFGRD96 36.0 150 70 65 4.60 0.5299 WVFGRD96 38.0 150 75 65 4.60 0.4937 WVFGRD96 40.0 150 75 75 4.72 0.4646 WVFGRD96 42.0 150 75 75 4.73 0.4278 WVFGRD96 44.0 150 75 75 4.73 0.3924 WVFGRD96 46.0 150 70 65 4.73 0.3615 WVFGRD96 48.0 155 70 70 4.73 0.3336 WVFGRD96 50.0 155 70 70 4.73 0.3076 WVFGRD96 52.0 155 70 70 4.73 0.2834 WVFGRD96 54.0 150 75 60 4.73 0.2625 WVFGRD96 56.0 320 70 50 4.75 0.2506 WVFGRD96 58.0 320 70 50 4.76 0.2484 WVFGRD96 60.0 105 45 10 4.74 0.2475 WVFGRD96 62.0 115 40 20 4.74 0.2497 WVFGRD96 64.0 120 40 25 4.74 0.2524 WVFGRD96 66.0 120 40 25 4.75 0.2535 WVFGRD96 68.0 130 35 40 4.76 0.2580 WVFGRD96 70.0 135 35 45 4.77 0.2622 WVFGRD96 72.0 130 40 40 4.77 0.2664 WVFGRD96 74.0 135 40 45 4.78 0.2692 WVFGRD96 76.0 135 40 45 4.78 0.2732 WVFGRD96 78.0 140 40 50 4.79 0.2767 WVFGRD96 80.0 140 40 50 4.79 0.2796 WVFGRD96 82.0 140 40 50 4.80 0.2841 WVFGRD96 84.0 140 40 50 4.80 0.2864 WVFGRD96 86.0 145 40 55 4.81 0.2914 WVFGRD96 88.0 145 40 55 4.81 0.2955 WVFGRD96 90.0 145 40 55 4.81 0.2967 WVFGRD96 92.0 145 45 55 4.82 0.3012 WVFGRD96 94.0 145 45 55 4.82 0.3044 WVFGRD96 96.0 145 45 55 4.82 0.3057 WVFGRD96 98.0 145 45 55 4.83 0.3082 WVFGRD96 100.0 145 45 55 4.83 0.3107 WVFGRD96 102.0 150 45 60 4.83 0.3106 WVFGRD96 104.0 150 45 60 4.83 0.3122 WVFGRD96 106.0 145 50 55 4.83 0.3137 WVFGRD96 108.0 145 50 55 4.84 0.3134
The best solution is
WVFGRD96 18.0 155 70 75 4.51 0.7779
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: