2014/04/07 06:24:22 -20.700 -70.947 14.2 4.9 Chile
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/04/07 06:24:22:0 -20.70 -70.95 14.2 4.9 Chile Stations used: CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.23e+23 dyne-cm Mw = 4.66 Z = 18 km Plane Strike Dip Rake NP1 164 65 88 NP2 350 25 95 Principal Axes: Axis Value Plunge Azimuth T 1.23e+23 70 70 N 0.00e+00 2 165 P -1.23e+23 20 256 Moment Tensor: (dyne-cm) Component Value Mxx -4.38e+21 Mxy -2.03e+22 Mxz 2.33e+22 Myy -8.95e+22 Myz 7.59e+22 Mzz 9.39e+22 -########----- ----#############----- -------###############------ --------#################----- ---------####################----- ----------#####################----- -----------######################----- ------------#######################----- -------------######################----- --------------######## ############----- --------------######## T ############----- ---------------####### ############----- --- ---------######################----- -- P ----------#####################---- -- -----------###################----- ---------------###################---- ---------------#################---- ---------------###############---- --------------#############--- ---------------#########---- -------------######--- ------------#- Global CMT Convention Moment Tensor: R T P 9.39e+22 2.33e+22 -7.59e+22 2.33e+22 -4.38e+21 2.03e+22 -7.59e+22 2.03e+22 -8.95e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140407062422/index.html |
STK = 350 DIP = 25 RAKE = 95 MW = 4.66 HS = 18.0
The NDK file is 20140407062422.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/04/07 06:24:22:0 -20.70 -70.95 14.2 4.9 Chile Stations used: CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.23e+23 dyne-cm Mw = 4.66 Z = 18 km Plane Strike Dip Rake NP1 164 65 88 NP2 350 25 95 Principal Axes: Axis Value Plunge Azimuth T 1.23e+23 70 70 N 0.00e+00 2 165 P -1.23e+23 20 256 Moment Tensor: (dyne-cm) Component Value Mxx -4.38e+21 Mxy -2.03e+22 Mxz 2.33e+22 Myy -8.95e+22 Myz 7.59e+22 Mzz 9.39e+22 -########----- ----#############----- -------###############------ --------#################----- ---------####################----- ----------#####################----- -----------######################----- ------------#######################----- -------------######################----- --------------######## ############----- --------------######## T ############----- ---------------####### ############----- --- ---------######################----- -- P ----------#####################---- -- -----------###################----- ---------------###################---- ---------------#################---- ---------------###############---- --------------#############--- ---------------#########---- -------------######--- ------------#- Global CMT Convention Moment Tensor: R T P 9.39e+22 2.33e+22 -7.59e+22 2.33e+22 -4.38e+21 2.03e+22 -7.59e+22 2.03e+22 -8.95e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140407062422/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 350 50 -90 4.40 0.4023 WVFGRD96 4.0 345 85 -75 4.51 0.3475 WVFGRD96 6.0 345 85 -75 4.51 0.4950 WVFGRD96 8.0 345 85 -80 4.59 0.5798 WVFGRD96 10.0 165 90 75 4.59 0.6506 WVFGRD96 12.0 345 20 90 4.62 0.7078 WVFGRD96 14.0 350 25 95 4.64 0.7548 WVFGRD96 16.0 350 25 95 4.65 0.7815 WVFGRD96 18.0 350 25 95 4.66 0.7873 WVFGRD96 20.0 165 65 90 4.66 0.7793 WVFGRD96 22.0 350 25 95 4.68 0.7640 WVFGRD96 24.0 345 25 90 4.68 0.7411 WVFGRD96 26.0 345 25 90 4.69 0.7153 WVFGRD96 28.0 345 25 90 4.70 0.6878 WVFGRD96 30.0 155 65 70 4.72 0.6618 WVFGRD96 32.0 155 65 70 4.73 0.6309 WVFGRD96 34.0 155 65 70 4.73 0.5978 WVFGRD96 36.0 155 70 65 4.75 0.5637 WVFGRD96 38.0 155 70 65 4.75 0.5300 WVFGRD96 40.0 160 70 80 4.87 0.5090 WVFGRD96 42.0 155 70 75 4.88 0.4761 WVFGRD96 44.0 155 70 75 4.88 0.4435 WVFGRD96 46.0 155 70 70 4.89 0.4121 WVFGRD96 48.0 155 70 70 4.89 0.3816 WVFGRD96 50.0 160 70 80 4.89 0.3532 WVFGRD96 52.0 310 35 35 4.89 0.3279 WVFGRD96 54.0 305 40 25 4.89 0.3071 WVFGRD96 56.0 305 40 25 4.90 0.2896 WVFGRD96 58.0 305 40 25 4.90 0.2730 WVFGRD96 60.0 300 40 20 4.90 0.2595 WVFGRD96 62.0 130 30 40 4.88 0.2601 WVFGRD96 64.0 130 30 40 4.89 0.2653 WVFGRD96 66.0 135 30 45 4.90 0.2679 WVFGRD96 68.0 140 30 50 4.91 0.2739 WVFGRD96 70.0 145 30 55 4.91 0.2791 WVFGRD96 72.0 145 35 55 4.92 0.2845 WVFGRD96 74.0 145 35 55 4.93 0.2874 WVFGRD96 76.0 145 35 55 4.93 0.2915 WVFGRD96 78.0 150 35 60 4.94 0.2946 WVFGRD96 80.0 150 35 60 4.94 0.2950 WVFGRD96 82.0 150 35 60 4.95 0.2993 WVFGRD96 84.0 150 35 60 4.95 0.3003 WVFGRD96 86.0 150 40 60 4.95 0.3028 WVFGRD96 88.0 150 40 60 4.96 0.3065 WVFGRD96 90.0 150 40 60 4.96 0.3072 WVFGRD96 92.0 150 40 60 4.96 0.3086 WVFGRD96 94.0 150 40 60 4.97 0.3106 WVFGRD96 96.0 0 50 -80 4.97 0.3093 WVFGRD96 98.0 0 50 -80 4.97 0.3159 WVFGRD96 100.0 0 50 -80 4.98 0.3203 WVFGRD96 102.0 0 50 -80 4.98 0.3238 WVFGRD96 104.0 -5 45 -85 4.99 0.3298 WVFGRD96 106.0 -5 45 -85 4.99 0.3337 WVFGRD96 108.0 -5 45 -85 4.99 0.3360
The best solution is
WVFGRD96 18.0 350 25 95 4.66 0.7873
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: