Location

2014/04/07 06:24:22 -20.700 -70.947 14.2 4.9 Chile

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2014/04/07 06:24:22:0 -20.70  -70.95  14.2 4.9 Chile
 
 Stations used:
   CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB08 CX.PB09 
   CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX 
   GT.LPAZ IU.LVC 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 1.23e+23 dyne-cm
  Mw = 4.66 
  Z  = 18 km
  Plane   Strike  Dip  Rake
   NP1      164    65    88
   NP2      350    25    95
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.23e+23     70      70
    N   0.00e+00      2     165
    P  -1.23e+23     20     256

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -4.38e+21
       Mxy    -2.03e+22
       Mxz     2.33e+22
       Myy    -8.95e+22
       Myz     7.59e+22
       Mzz     9.39e+22
                                                     
                                                     
                                                     
                                                     
                     -########-----                  
                 ----#############-----              
              -------###############------           
             --------#################-----          
           ---------####################-----        
          ----------#####################-----       
         -----------######################-----      
        ------------#######################-----     
        -------------######################-----     
       --------------########   ############-----    
       --------------######## T ############-----    
       ---------------#######   ############-----    
       ---   ---------######################-----    
        -- P ----------#####################----     
        --   -----------###################-----     
         ---------------###################----      
          ---------------#################----       
           ---------------###############----        
             --------------#############---          
              ---------------#########----           
                 -------------######---              
                     ------------#-                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  9.39e+22   2.33e+22  -7.59e+22 
  2.33e+22  -4.38e+21   2.03e+22 
 -7.59e+22   2.03e+22  -8.95e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140407062422/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 350
      DIP = 25
     RAKE = 95
       MW = 4.66
       HS = 18.0

The NDK file is 20140407062422.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2014/04/07 06:24:22:0 -20.70  -70.95  14.2 4.9 Chile
 
 Stations used:
   CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB08 CX.PB09 
   CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX 
   GT.LPAZ IU.LVC 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 1.23e+23 dyne-cm
  Mw = 4.66 
  Z  = 18 km
  Plane   Strike  Dip  Rake
   NP1      164    65    88
   NP2      350    25    95
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.23e+23     70      70
    N   0.00e+00      2     165
    P  -1.23e+23     20     256

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -4.38e+21
       Mxy    -2.03e+22
       Mxz     2.33e+22
       Myy    -8.95e+22
       Myz     7.59e+22
       Mzz     9.39e+22
                                                     
                                                     
                                                     
                                                     
                     -########-----                  
                 ----#############-----              
              -------###############------           
             --------#################-----          
           ---------####################-----        
          ----------#####################-----       
         -----------######################-----      
        ------------#######################-----     
        -------------######################-----     
       --------------########   ############-----    
       --------------######## T ############-----    
       ---------------#######   ############-----    
       ---   ---------######################-----    
        -- P ----------#####################----     
        --   -----------###################-----     
         ---------------###################----      
          ---------------#################----       
           ---------------###############----        
             --------------#############---          
              ---------------#########----           
                 -------------######---              
                     ------------#-                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  9.39e+22   2.33e+22  -7.59e+22 
  2.33e+22  -4.38e+21   2.03e+22 
 -7.59e+22   2.03e+22  -8.95e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140407062422/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   350    50   -90   4.40 0.4023
WVFGRD96    4.0   345    85   -75   4.51 0.3475
WVFGRD96    6.0   345    85   -75   4.51 0.4950
WVFGRD96    8.0   345    85   -80   4.59 0.5798
WVFGRD96   10.0   165    90    75   4.59 0.6506
WVFGRD96   12.0   345    20    90   4.62 0.7078
WVFGRD96   14.0   350    25    95   4.64 0.7548
WVFGRD96   16.0   350    25    95   4.65 0.7815
WVFGRD96   18.0   350    25    95   4.66 0.7873
WVFGRD96   20.0   165    65    90   4.66 0.7793
WVFGRD96   22.0   350    25    95   4.68 0.7640
WVFGRD96   24.0   345    25    90   4.68 0.7411
WVFGRD96   26.0   345    25    90   4.69 0.7153
WVFGRD96   28.0   345    25    90   4.70 0.6878
WVFGRD96   30.0   155    65    70   4.72 0.6618
WVFGRD96   32.0   155    65    70   4.73 0.6309
WVFGRD96   34.0   155    65    70   4.73 0.5978
WVFGRD96   36.0   155    70    65   4.75 0.5637
WVFGRD96   38.0   155    70    65   4.75 0.5300
WVFGRD96   40.0   160    70    80   4.87 0.5090
WVFGRD96   42.0   155    70    75   4.88 0.4761
WVFGRD96   44.0   155    70    75   4.88 0.4435
WVFGRD96   46.0   155    70    70   4.89 0.4121
WVFGRD96   48.0   155    70    70   4.89 0.3816
WVFGRD96   50.0   160    70    80   4.89 0.3532
WVFGRD96   52.0   310    35    35   4.89 0.3279
WVFGRD96   54.0   305    40    25   4.89 0.3071
WVFGRD96   56.0   305    40    25   4.90 0.2896
WVFGRD96   58.0   305    40    25   4.90 0.2730
WVFGRD96   60.0   300    40    20   4.90 0.2595
WVFGRD96   62.0   130    30    40   4.88 0.2601
WVFGRD96   64.0   130    30    40   4.89 0.2653
WVFGRD96   66.0   135    30    45   4.90 0.2679
WVFGRD96   68.0   140    30    50   4.91 0.2739
WVFGRD96   70.0   145    30    55   4.91 0.2791
WVFGRD96   72.0   145    35    55   4.92 0.2845
WVFGRD96   74.0   145    35    55   4.93 0.2874
WVFGRD96   76.0   145    35    55   4.93 0.2915
WVFGRD96   78.0   150    35    60   4.94 0.2946
WVFGRD96   80.0   150    35    60   4.94 0.2950
WVFGRD96   82.0   150    35    60   4.95 0.2993
WVFGRD96   84.0   150    35    60   4.95 0.3003
WVFGRD96   86.0   150    40    60   4.95 0.3028
WVFGRD96   88.0   150    40    60   4.96 0.3065
WVFGRD96   90.0   150    40    60   4.96 0.3072
WVFGRD96   92.0   150    40    60   4.96 0.3086
WVFGRD96   94.0   150    40    60   4.97 0.3106
WVFGRD96   96.0     0    50   -80   4.97 0.3093
WVFGRD96   98.0     0    50   -80   4.97 0.3159
WVFGRD96  100.0     0    50   -80   4.98 0.3203
WVFGRD96  102.0     0    50   -80   4.98 0.3238
WVFGRD96  104.0    -5    45   -85   4.99 0.3298
WVFGRD96  106.0    -5    45   -85   4.99 0.3337
WVFGRD96  108.0    -5    45   -85   4.99 0.3360

The best solution is

WVFGRD96   18.0   350    25    95   4.66 0.7873

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Mon Apr 7 08:26:00 CDT 2014