2014/04/06 14:06:07 -20.436 -71.057 8.7 5.6 Chile
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/04/06 14:06:07:0 -20.44 -71.06 8.7 5.6 Chile Stations used: CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.16e+24 dyne-cm Mw = 5.31 Z = 18 km Plane Strike Dip Rake NP1 330 65 75 NP2 182 29 119 Principal Axes: Axis Value Plunge Azimuth T 1.16e+24 67 213 N 0.00e+00 14 336 P -1.16e+24 19 71 Moment Tensor: (dyne-cm) Component Value Mxx 2.11e+22 Mxy -2.36e+23 Mxz -4.71e+23 Myy -8.80e+23 Myz -5.61e+23 Mzz 8.59e+23 ####---------- --###----------------- ------##-------------------- -----#######------------------ ------##########------------------ ------#############----------------- ------###############----------------- ------#################------------ -- ------###################---------- P -- ------#####################--------- --- ------######################-------------- ------#######################------------- ------########## ##########------------- -----########## T ###########----------- ------######### ############---------- -----########################--------- -----#######################-------- -----#######################------ -----#####################---- -----####################--- ----#################- ---########### Global CMT Convention Moment Tensor: R T P 8.59e+23 -4.71e+23 5.61e+23 -4.71e+23 2.11e+22 2.36e+23 5.61e+23 2.36e+23 -8.80e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140406140607/index.html |
STK = 330 DIP = 65 RAKE = 75 MW = 5.31 HS = 18.0
The NDK file is 20140406140607.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/04/06 14:06:07:0 -20.44 -71.06 8.7 5.6 Chile Stations used: CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.16e+24 dyne-cm Mw = 5.31 Z = 18 km Plane Strike Dip Rake NP1 330 65 75 NP2 182 29 119 Principal Axes: Axis Value Plunge Azimuth T 1.16e+24 67 213 N 0.00e+00 14 336 P -1.16e+24 19 71 Moment Tensor: (dyne-cm) Component Value Mxx 2.11e+22 Mxy -2.36e+23 Mxz -4.71e+23 Myy -8.80e+23 Myz -5.61e+23 Mzz 8.59e+23 ####---------- --###----------------- ------##-------------------- -----#######------------------ ------##########------------------ ------#############----------------- ------###############----------------- ------#################------------ -- ------###################---------- P -- ------#####################--------- --- ------######################-------------- ------#######################------------- ------########## ##########------------- -----########## T ###########----------- ------######### ############---------- -----########################--------- -----#######################-------- -----#######################------ -----#####################---- -----####################--- ----#################- ---########### Global CMT Convention Moment Tensor: R T P 8.59e+23 -4.71e+23 5.61e+23 -4.71e+23 2.11e+22 2.36e+23 5.61e+23 2.36e+23 -8.80e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140406140607/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 160 45 -90 5.06 0.4339 WVFGRD96 4.0 345 75 -70 5.16 0.3285 WVFGRD96 6.0 335 85 -80 5.17 0.4350 WVFGRD96 8.0 335 80 -80 5.25 0.5040 WVFGRD96 10.0 335 80 -75 5.24 0.5507 WVFGRD96 12.0 335 70 85 5.26 0.5984 WVFGRD96 14.0 335 70 80 5.28 0.6430 WVFGRD96 16.0 330 65 75 5.30 0.6705 WVFGRD96 18.0 330 65 75 5.31 0.6807 WVFGRD96 20.0 330 65 75 5.32 0.6765 WVFGRD96 22.0 330 65 75 5.33 0.6630 WVFGRD96 24.0 330 65 70 5.34 0.6412 WVFGRD96 26.0 325 65 70 5.35 0.6150 WVFGRD96 28.0 325 65 70 5.36 0.5841 WVFGRD96 30.0 320 65 65 5.37 0.5496 WVFGRD96 32.0 320 65 65 5.37 0.5128 WVFGRD96 34.0 320 65 65 5.38 0.4737 WVFGRD96 36.0 320 60 65 5.38 0.4331 WVFGRD96 38.0 320 60 65 5.39 0.3916 WVFGRD96 40.0 325 65 75 5.50 0.3593 WVFGRD96 42.0 320 65 70 5.51 0.3271 WVFGRD96 44.0 320 60 65 5.50 0.2958 WVFGRD96 46.0 320 60 65 5.50 0.2667 WVFGRD96 48.0 315 60 60 5.50 0.2403 WVFGRD96 50.0 310 60 55 5.50 0.2168 WVFGRD96 52.0 140 45 50 5.47 0.1980 WVFGRD96 54.0 140 50 50 5.47 0.1839 WVFGRD96 56.0 135 50 40 5.47 0.1734 WVFGRD96 58.0 140 50 45 5.47 0.1668 WVFGRD96 60.0 140 50 45 5.47 0.1601 WVFGRD96 62.0 140 55 40 5.48 0.1569 WVFGRD96 64.0 140 55 40 5.48 0.1556 WVFGRD96 66.0 140 55 40 5.48 0.1525 WVFGRD96 68.0 140 60 40 5.49 0.1530 WVFGRD96 70.0 140 60 40 5.49 0.1544 WVFGRD96 72.0 140 60 40 5.50 0.1544 WVFGRD96 74.0 140 60 40 5.50 0.1564 WVFGRD96 76.0 145 60 45 5.51 0.1569 WVFGRD96 78.0 145 60 45 5.51 0.1597 WVFGRD96 80.0 145 60 45 5.52 0.1609 WVFGRD96 82.0 145 65 45 5.53 0.1637 WVFGRD96 84.0 145 65 50 5.53 0.1650 WVFGRD96 86.0 145 65 50 5.53 0.1671 WVFGRD96 88.0 145 65 50 5.54 0.1682 WVFGRD96 90.0 145 65 50 5.54 0.1696 WVFGRD96 92.0 145 65 55 5.55 0.1709 WVFGRD96 94.0 145 65 55 5.55 0.1722 WVFGRD96 96.0 145 65 55 5.55 0.1732 WVFGRD96 98.0 145 70 60 5.56 0.1739 WVFGRD96 100.0 145 70 60 5.57 0.1754 WVFGRD96 102.0 275 60 -75 5.57 0.1766 WVFGRD96 104.0 275 60 -75 5.57 0.1796 WVFGRD96 106.0 275 60 -75 5.57 0.1825 WVFGRD96 108.0 275 60 -75 5.58 0.1853
The best solution is
WVFGRD96 18.0 330 65 75 5.31 0.6807
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: