Location

2014/04/06 09:06:51 -20.791 -70.779 15.7 4.8 Chile

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2014/04/06 09:06:51:0 -20.79  -70.78  15.7 4.8 Chile
 
 Stations used:
   CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB08 CX.PB09 
   CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX 
   GT.LPAZ IU.LVC 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 3.20e+22 dyne-cm
  Mw = 4.27 
  Z  = 26 km
  Plane   Strike  Dip  Rake
   NP1      120    75    85
   NP2      319    16   108
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.20e+22     60      23
    N   0.00e+00      5     121
    P  -3.20e+22     30     214

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -9.62e+21
       Mxy    -8.25e+21
       Mxz     2.43e+22
       Myy    -6.32e+21
       Myz     1.32e+22
       Mzz     1.59e+22
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 -###############------              
              #######################-----           
             ##########################----          
           ##############################----        
          #################################---       
         --##################   ############---      
        -----################ T #############---     
        -------##############   #############---     
       ----------#############################---    
       -------------##########################---    
       ---------------#########################--    
       ------------------######################--    
        --------------------##################--     
        ------------------------##############--     
         ----------------------------#########-      
          --------   -----------------------#-       
           ------- P -----------------------#        
             -----   ----------------------          
              ----------------------------           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.59e+22   2.43e+22  -1.32e+22 
  2.43e+22  -9.62e+21   8.25e+21 
 -1.32e+22   8.25e+21  -6.32e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140406090651/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 120
      DIP = 75
     RAKE = 85
       MW = 4.27
       HS = 26.0

The NDK file is 20140406090651.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2014/04/06 09:06:51:0 -20.79  -70.78  15.7 4.8 Chile
 
 Stations used:
   CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB08 CX.PB09 
   CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX 
   GT.LPAZ IU.LVC 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 3.20e+22 dyne-cm
  Mw = 4.27 
  Z  = 26 km
  Plane   Strike  Dip  Rake
   NP1      120    75    85
   NP2      319    16   108
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.20e+22     60      23
    N   0.00e+00      5     121
    P  -3.20e+22     30     214

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -9.62e+21
       Mxy    -8.25e+21
       Mxz     2.43e+22
       Myy    -6.32e+21
       Myz     1.32e+22
       Mzz     1.59e+22
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 -###############------              
              #######################-----           
             ##########################----          
           ##############################----        
          #################################---       
         --##################   ############---      
        -----################ T #############---     
        -------##############   #############---     
       ----------#############################---    
       -------------##########################---    
       ---------------#########################--    
       ------------------######################--    
        --------------------##################--     
        ------------------------##############--     
         ----------------------------#########-      
          --------   -----------------------#-       
           ------- P -----------------------#        
             -----   ----------------------          
              ----------------------------           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.59e+22   2.43e+22  -1.32e+22 
  2.43e+22  -9.62e+21   8.25e+21 
 -1.32e+22   8.25e+21  -6.32e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140406090651/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   295    50    90   3.99 0.4402
WVFGRD96    4.0   110    30    80   4.05 0.3369
WVFGRD96    6.0   205    10    -5   4.04 0.3767
WVFGRD96    8.0   195     5   -15   4.13 0.4593
WVFGRD96   10.0   180    10   -30   4.14 0.5463
WVFGRD96   12.0   175    15   -40   4.15 0.6092
WVFGRD96   14.0   170    15   -45   4.17 0.6553
WVFGRD96   16.0   165    15   -45   4.19 0.6864
WVFGRD96   18.0   120    75    85   4.20 0.7158
WVFGRD96   20.0   120    75    80   4.22 0.7387
WVFGRD96   22.0   120    75    85   4.24 0.7533
WVFGRD96   24.0   120    75    85   4.26 0.7611
WVFGRD96   26.0   120    75    85   4.27 0.7626
WVFGRD96   28.0   315    15   105   4.29 0.7571
WVFGRD96   30.0   120    75    85   4.30 0.7459
WVFGRD96   32.0   120    75    85   4.31 0.7289
WVFGRD96   34.0   120    75    85   4.32 0.7063
WVFGRD96   36.0   310    15   100   4.32 0.6808
WVFGRD96   38.0   295    15    85   4.33 0.6527
WVFGRD96   40.0   310    10   100   4.47 0.6236
WVFGRD96   42.0   120    80    90   4.48 0.5871
WVFGRD96   44.0   120    80    90   4.48 0.5493
WVFGRD96   46.0   290    10    80   4.49 0.5114
WVFGRD96   48.0   285    10    75   4.49 0.4738
WVFGRD96   50.0   275    10    65   4.49 0.4371
WVFGRD96   52.0   275    15    60   4.49 0.4025
WVFGRD96   54.0   285    15    65   4.48 0.3706
WVFGRD96   56.0   300    90   -75   4.46 0.3414
WVFGRD96   58.0   120    90    75   4.46 0.3194
WVFGRD96   60.0   120    90    70   4.45 0.3011
WVFGRD96   62.0   150    60    90   4.47 0.2871
WVFGRD96   64.0   125    50   -70   4.51 0.2806
WVFGRD96   66.0   125    50   -70   4.51 0.2757
WVFGRD96   68.0   130    50   -65   4.52 0.2709
WVFGRD96   70.0    95    30   -85   4.49 0.2701
WVFGRD96   72.0    95    30   -85   4.50 0.2737
WVFGRD96   74.0   100    30   -80   4.51 0.2777
WVFGRD96   76.0   100    30   -80   4.51 0.2798
WVFGRD96   78.0   105    30   -75   4.53 0.2834
WVFGRD96   80.0   105    30   -75   4.53 0.2863
WVFGRD96   82.0   110    30   -70   4.54 0.2890
WVFGRD96   84.0   110    30   -70   4.54 0.2912
WVFGRD96   86.0   110    30   -70   4.55 0.2933
WVFGRD96   88.0   115    30   -65   4.55 0.2953
WVFGRD96   90.0   115    30   -65   4.56 0.2965
WVFGRD96   92.0   110    25   -75   4.55 0.2999
WVFGRD96   94.0   110    25   -75   4.55 0.3034
WVFGRD96   96.0   110    25   -75   4.55 0.3066
WVFGRD96   98.0   115    25   -70   4.56 0.3091
WVFGRD96  100.0   115    25   -70   4.56 0.3115
WVFGRD96  102.0   120    25   -70   4.57 0.3141
WVFGRD96  104.0   120    25   -70   4.57 0.3166
WVFGRD96  106.0   120    25   -70   4.57 0.3188
WVFGRD96  108.0   120    25   -70   4.57 0.3207

The best solution is

WVFGRD96   26.0   120    75    85   4.27 0.7626

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Sun Apr 6 09:52:37 CDT 2014