2014/04/05 19:21:43 -20.750 -70.664 16.2 4.6 Chile
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/04/05 19:21:43:0 -20.75 -70.66 16.2 4.6 Chile Stations used: CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 2.69e+22 dyne-cm Mw = 4.22 Z = 20 km Plane Strike Dip Rake NP1 130 65 70 NP2 351 32 126 Principal Axes: Axis Value Plunge Azimuth T 2.69e+22 64 6 N 0.00e+00 18 139 P -2.69e+22 18 235 Moment Tensor: (dyne-cm) Component Value Mxx -3.15e+21 Mxy -1.10e+22 Mxz 1.50e+22 Myy -1.62e+22 Myz 7.47e+21 Mzz 1.94e+22 ########------ ###############------- #####################------- ########################------ -##########################------- ---##########################------- -----############# ##########------- ------############# T ###########------- -------############ ############------ ----------#########################------- -----------########################------- -------------######################------- ---------------####################------- ----------------##################------ ------------------################------ --- --------------############------ -- P -----------------#########----- - ---------------------####----- --------------------------#### -----------------------##### -------------------### ------------## Global CMT Convention Moment Tensor: R T P 1.94e+22 1.50e+22 -7.47e+21 1.50e+22 -3.15e+21 1.10e+22 -7.47e+21 1.10e+22 -1.62e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140405192143/index.html |
STK = 130 DIP = 65 RAKE = 70 MW = 4.22 HS = 20.0
The NDK file is 20140405192143.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/04/05 19:21:43:0 -20.75 -70.66 16.2 4.6 Chile Stations used: CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 2.69e+22 dyne-cm Mw = 4.22 Z = 20 km Plane Strike Dip Rake NP1 130 65 70 NP2 351 32 126 Principal Axes: Axis Value Plunge Azimuth T 2.69e+22 64 6 N 0.00e+00 18 139 P -2.69e+22 18 235 Moment Tensor: (dyne-cm) Component Value Mxx -3.15e+21 Mxy -1.10e+22 Mxz 1.50e+22 Myy -1.62e+22 Myz 7.47e+21 Mzz 1.94e+22 ########------ ###############------- #####################------- ########################------ -##########################------- ---##########################------- -----############# ##########------- ------############# T ###########------- -------############ ############------ ----------#########################------- -----------########################------- -------------######################------- ---------------####################------- ----------------##################------ ------------------################------ --- --------------############------ -- P -----------------#########----- - ---------------------####----- --------------------------#### -----------------------##### -------------------### ------------## Global CMT Convention Moment Tensor: R T P 1.94e+22 1.50e+22 -7.47e+21 1.50e+22 -3.15e+21 1.10e+22 -7.47e+21 1.10e+22 -1.62e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140405192143/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 140 40 90 3.95 0.3775 WVFGRD96 4.0 310 60 80 4.01 0.2816 WVFGRD96 6.0 300 90 -65 4.03 0.3784 WVFGRD96 8.0 300 90 -70 4.11 0.4496 WVFGRD96 10.0 125 80 70 4.13 0.5260 WVFGRD96 12.0 130 70 70 4.15 0.5905 WVFGRD96 14.0 130 65 70 4.18 0.6445 WVFGRD96 16.0 130 65 70 4.19 0.6820 WVFGRD96 18.0 130 65 70 4.20 0.7028 WVFGRD96 20.0 130 65 70 4.22 0.7111 WVFGRD96 22.0 130 65 70 4.23 0.7097 WVFGRD96 24.0 130 70 70 4.24 0.7011 WVFGRD96 26.0 130 70 70 4.25 0.6880 WVFGRD96 28.0 130 70 70 4.26 0.6701 WVFGRD96 30.0 130 70 70 4.27 0.6463 WVFGRD96 32.0 130 70 70 4.28 0.6182 WVFGRD96 34.0 130 70 70 4.29 0.5874 WVFGRD96 36.0 130 75 70 4.29 0.5570 WVFGRD96 38.0 130 75 70 4.30 0.5281 WVFGRD96 40.0 130 80 75 4.43 0.5006 WVFGRD96 42.0 135 75 75 4.43 0.4703 WVFGRD96 44.0 135 75 75 4.43 0.4394 WVFGRD96 46.0 135 75 75 4.43 0.4094 WVFGRD96 48.0 135 75 70 4.43 0.3808 WVFGRD96 50.0 135 75 70 4.43 0.3550 WVFGRD96 52.0 135 75 70 4.43 0.3314 WVFGRD96 54.0 80 40 -85 4.45 0.3129 WVFGRD96 56.0 85 40 -75 4.47 0.3034 WVFGRD96 58.0 90 40 -70 4.47 0.2953 WVFGRD96 60.0 90 40 -70 4.48 0.2872 WVFGRD96 62.0 90 40 -70 4.48 0.2793 WVFGRD96 64.0 90 40 -65 4.49 0.2734 WVFGRD96 66.0 80 45 -70 4.49 0.2680 WVFGRD96 68.0 90 30 -75 4.49 0.2687 WVFGRD96 70.0 85 30 -80 4.49 0.2706 WVFGRD96 72.0 90 30 -75 4.50 0.2735 WVFGRD96 74.0 90 30 -80 4.50 0.2749 WVFGRD96 76.0 90 30 -80 4.50 0.2765 WVFGRD96 78.0 90 30 -80 4.51 0.2780 WVFGRD96 80.0 265 55 -85 4.49 0.2805 WVFGRD96 82.0 265 55 -85 4.50 0.2824 WVFGRD96 84.0 275 60 -80 4.49 0.2844 WVFGRD96 86.0 270 60 -85 4.50 0.2865 WVFGRD96 88.0 270 60 -85 4.51 0.2888 WVFGRD96 90.0 270 60 -85 4.51 0.2902 WVFGRD96 92.0 270 60 -85 4.51 0.2913 WVFGRD96 94.0 270 60 -85 4.52 0.2930 WVFGRD96 96.0 270 60 -85 4.52 0.2936 WVFGRD96 98.0 270 60 -85 4.52 0.2955 WVFGRD96 100.0 270 60 -85 4.52 0.2958 WVFGRD96 102.0 270 60 -85 4.53 0.2973 WVFGRD96 104.0 270 60 -85 4.53 0.2972 WVFGRD96 106.0 270 60 -85 4.53 0.2968 WVFGRD96 108.0 265 60 -85 4.53 0.2990
The best solution is
WVFGRD96 20.0 130 65 70 4.22 0.7111
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: