Location

2014/04/05 19:21:43 -20.750 -70.664 16.2 4.6 Chile

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2014/04/05 19:21:43:0 -20.75  -70.66  16.2 4.6 Chile
 
 Stations used:
   CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB08 CX.PB09 
   CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX 
   GT.LPAZ IU.LVC 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 2.69e+22 dyne-cm
  Mw = 4.22 
  Z  = 20 km
  Plane   Strike  Dip  Rake
   NP1      130    65    70
   NP2      351    32   126
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.69e+22     64       6
    N   0.00e+00     18     139
    P  -2.69e+22     18     235

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -3.15e+21
       Mxy    -1.10e+22
       Mxz     1.50e+22
       Myy    -1.62e+22
       Myz     7.47e+21
       Mzz     1.94e+22
                                                     
                                                     
                                                     
                                                     
                     ########------                  
                 ###############-------              
              #####################-------           
             ########################------          
           -##########################-------        
          ---##########################-------       
         -----#############   ##########-------      
        ------############# T ###########-------     
        -------############   ############------     
       ----------#########################-------    
       -----------########################-------    
       -------------######################-------    
       ---------------####################-------    
        ----------------##################------     
        ------------------################------     
         ---   --------------############------      
          -- P -----------------#########-----       
           -   ---------------------####-----        
             --------------------------####          
              -----------------------#####           
                 -------------------###              
                     ------------##                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.94e+22   1.50e+22  -7.47e+21 
  1.50e+22  -3.15e+21   1.10e+22 
 -7.47e+21   1.10e+22  -1.62e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140405192143/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 130
      DIP = 65
     RAKE = 70
       MW = 4.22
       HS = 20.0

The NDK file is 20140405192143.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2014/04/05 19:21:43:0 -20.75  -70.66  16.2 4.6 Chile
 
 Stations used:
   CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB08 CX.PB09 
   CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX 
   GT.LPAZ IU.LVC 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 2.69e+22 dyne-cm
  Mw = 4.22 
  Z  = 20 km
  Plane   Strike  Dip  Rake
   NP1      130    65    70
   NP2      351    32   126
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.69e+22     64       6
    N   0.00e+00     18     139
    P  -2.69e+22     18     235

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -3.15e+21
       Mxy    -1.10e+22
       Mxz     1.50e+22
       Myy    -1.62e+22
       Myz     7.47e+21
       Mzz     1.94e+22
                                                     
                                                     
                                                     
                                                     
                     ########------                  
                 ###############-------              
              #####################-------           
             ########################------          
           -##########################-------        
          ---##########################-------       
         -----#############   ##########-------      
        ------############# T ###########-------     
        -------############   ############------     
       ----------#########################-------    
       -----------########################-------    
       -------------######################-------    
       ---------------####################-------    
        ----------------##################------     
        ------------------################------     
         ---   --------------############------      
          -- P -----------------#########-----       
           -   ---------------------####-----        
             --------------------------####          
              -----------------------#####           
                 -------------------###              
                     ------------##                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.94e+22   1.50e+22  -7.47e+21 
  1.50e+22  -3.15e+21   1.10e+22 
 -7.47e+21   1.10e+22  -1.62e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140405192143/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   140    40    90   3.95 0.3775
WVFGRD96    4.0   310    60    80   4.01 0.2816
WVFGRD96    6.0   300    90   -65   4.03 0.3784
WVFGRD96    8.0   300    90   -70   4.11 0.4496
WVFGRD96   10.0   125    80    70   4.13 0.5260
WVFGRD96   12.0   130    70    70   4.15 0.5905
WVFGRD96   14.0   130    65    70   4.18 0.6445
WVFGRD96   16.0   130    65    70   4.19 0.6820
WVFGRD96   18.0   130    65    70   4.20 0.7028
WVFGRD96   20.0   130    65    70   4.22 0.7111
WVFGRD96   22.0   130    65    70   4.23 0.7097
WVFGRD96   24.0   130    70    70   4.24 0.7011
WVFGRD96   26.0   130    70    70   4.25 0.6880
WVFGRD96   28.0   130    70    70   4.26 0.6701
WVFGRD96   30.0   130    70    70   4.27 0.6463
WVFGRD96   32.0   130    70    70   4.28 0.6182
WVFGRD96   34.0   130    70    70   4.29 0.5874
WVFGRD96   36.0   130    75    70   4.29 0.5570
WVFGRD96   38.0   130    75    70   4.30 0.5281
WVFGRD96   40.0   130    80    75   4.43 0.5006
WVFGRD96   42.0   135    75    75   4.43 0.4703
WVFGRD96   44.0   135    75    75   4.43 0.4394
WVFGRD96   46.0   135    75    75   4.43 0.4094
WVFGRD96   48.0   135    75    70   4.43 0.3808
WVFGRD96   50.0   135    75    70   4.43 0.3550
WVFGRD96   52.0   135    75    70   4.43 0.3314
WVFGRD96   54.0    80    40   -85   4.45 0.3129
WVFGRD96   56.0    85    40   -75   4.47 0.3034
WVFGRD96   58.0    90    40   -70   4.47 0.2953
WVFGRD96   60.0    90    40   -70   4.48 0.2872
WVFGRD96   62.0    90    40   -70   4.48 0.2793
WVFGRD96   64.0    90    40   -65   4.49 0.2734
WVFGRD96   66.0    80    45   -70   4.49 0.2680
WVFGRD96   68.0    90    30   -75   4.49 0.2687
WVFGRD96   70.0    85    30   -80   4.49 0.2706
WVFGRD96   72.0    90    30   -75   4.50 0.2735
WVFGRD96   74.0    90    30   -80   4.50 0.2749
WVFGRD96   76.0    90    30   -80   4.50 0.2765
WVFGRD96   78.0    90    30   -80   4.51 0.2780
WVFGRD96   80.0   265    55   -85   4.49 0.2805
WVFGRD96   82.0   265    55   -85   4.50 0.2824
WVFGRD96   84.0   275    60   -80   4.49 0.2844
WVFGRD96   86.0   270    60   -85   4.50 0.2865
WVFGRD96   88.0   270    60   -85   4.51 0.2888
WVFGRD96   90.0   270    60   -85   4.51 0.2902
WVFGRD96   92.0   270    60   -85   4.51 0.2913
WVFGRD96   94.0   270    60   -85   4.52 0.2930
WVFGRD96   96.0   270    60   -85   4.52 0.2936
WVFGRD96   98.0   270    60   -85   4.52 0.2955
WVFGRD96  100.0   270    60   -85   4.52 0.2958
WVFGRD96  102.0   270    60   -85   4.53 0.2973
WVFGRD96  104.0   270    60   -85   4.53 0.2972
WVFGRD96  106.0   270    60   -85   4.53 0.2968
WVFGRD96  108.0   265    60   -85   4.53 0.2990

The best solution is

WVFGRD96   20.0   130    65    70   4.22 0.7111

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Sun Apr 6 09:43:44 CDT 2014