2014/04/05 14:04:49 -20.353 -70.864 10.0 4.8 Chile
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/04/05 14:04:49:0 -20.35 -70.86 10.0 4.8 Chile Stations used: CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 2.07e+23 dyne-cm Mw = 4.81 Z = 12 km Plane Strike Dip Rake NP1 326 60 93 NP2 140 30 85 Principal Axes: Axis Value Plunge Azimuth T 2.07e+23 75 244 N 0.00e+00 2 144 P -2.07e+23 15 54 Moment Tensor: (dyne-cm) Component Value Mxx -6.48e+22 Mxy -8.62e+22 Mxz -5.42e+22 Myy -1.13e+23 Myz -8.88e+22 Mzz 1.78e+23 -------------- ---------------------- -######--------------------- ############------------------ --##############-------------- - --#################------------ P -- ---###################---------- --- ---######################--------------- ---#######################-------------- -----#######################-------------- -----########################------------- -----######### #############------------ ------######## T ##############----------- ------####### ###############--------- -------########################--------- -------########################------- -------#######################------ --------#####################----- ---------##################--- -----------###############-- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 1.78e+23 -5.42e+22 8.88e+22 -5.42e+22 -6.48e+22 8.62e+22 8.88e+22 8.62e+22 -1.13e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140405140449/index.html |
STK = 140 DIP = 30 RAKE = 85 MW = 4.81 HS = 12.0
The NDK file is 20140405140449.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/04/05 14:04:49:0 -20.35 -70.86 10.0 4.8 Chile Stations used: CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 2.07e+23 dyne-cm Mw = 4.81 Z = 12 km Plane Strike Dip Rake NP1 326 60 93 NP2 140 30 85 Principal Axes: Axis Value Plunge Azimuth T 2.07e+23 75 244 N 0.00e+00 2 144 P -2.07e+23 15 54 Moment Tensor: (dyne-cm) Component Value Mxx -6.48e+22 Mxy -8.62e+22 Mxz -5.42e+22 Myy -1.13e+23 Myz -8.88e+22 Mzz 1.78e+23 -------------- ---------------------- -######--------------------- ############------------------ --##############-------------- - --#################------------ P -- ---###################---------- --- ---######################--------------- ---#######################-------------- -----#######################-------------- -----########################------------- -----######### #############------------ ------######## T ##############----------- ------####### ###############--------- -------########################--------- -------########################------- -------#######################------ --------#####################----- ---------##################--- -----------###############-- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 1.78e+23 -5.42e+22 8.88e+22 -5.42e+22 -6.48e+22 8.62e+22 8.88e+22 8.62e+22 -1.13e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140405140449/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 280 70 30 4.53 0.3742 WVFGRD96 4.0 280 85 60 4.65 0.3600 WVFGRD96 6.0 120 15 55 4.68 0.4833 WVFGRD96 8.0 130 20 70 4.78 0.5734 WVFGRD96 10.0 140 25 85 4.80 0.6536 WVFGRD96 12.0 140 30 85 4.81 0.6936 WVFGRD96 14.0 140 35 85 4.82 0.6878 WVFGRD96 16.0 145 35 90 4.81 0.6526 WVFGRD96 18.0 320 55 85 4.81 0.6042 WVFGRD96 20.0 315 60 80 4.80 0.5517 WVFGRD96 22.0 165 45 -60 4.81 0.5217 WVFGRD96 24.0 165 45 -60 4.81 0.4923 WVFGRD96 26.0 170 45 -55 4.82 0.4619 WVFGRD96 28.0 175 45 -50 4.82 0.4309 WVFGRD96 30.0 175 45 -50 4.83 0.4001 WVFGRD96 32.0 175 45 -50 4.83 0.3687 WVFGRD96 34.0 170 40 -60 4.83 0.3380 WVFGRD96 36.0 175 40 -55 4.83 0.3093 WVFGRD96 38.0 175 40 -55 4.85 0.2825 WVFGRD96 40.0 165 35 -65 4.97 0.2752 WVFGRD96 42.0 170 40 -55 4.97 0.2519 WVFGRD96 44.0 170 40 -55 4.98 0.2355 WVFGRD96 46.0 180 50 -25 5.00 0.2213 WVFGRD96 48.0 180 50 -25 5.01 0.2101 WVFGRD96 50.0 180 55 -25 5.02 0.2002 WVFGRD96 52.0 185 55 -20 5.02 0.1919 WVFGRD96 54.0 185 55 -15 5.03 0.1859 WVFGRD96 56.0 185 55 -15 5.04 0.1817 WVFGRD96 58.0 185 60 -10 5.05 0.1798 WVFGRD96 60.0 185 65 -10 5.05 0.1812 WVFGRD96 62.0 185 65 -10 5.06 0.1831 WVFGRD96 64.0 185 65 -10 5.07 0.1840 WVFGRD96 66.0 185 65 -10 5.07 0.1831 WVFGRD96 68.0 185 70 -5 5.08 0.1834 WVFGRD96 70.0 185 70 -5 5.08 0.1840 WVFGRD96 72.0 185 70 -5 5.09 0.1846 WVFGRD96 74.0 185 70 -5 5.09 0.1857 WVFGRD96 76.0 185 70 -5 5.10 0.1848 WVFGRD96 78.0 185 70 -5 5.10 0.1861 WVFGRD96 80.0 185 75 -5 5.10 0.1885 WVFGRD96 82.0 185 75 -5 5.11 0.1905 WVFGRD96 84.0 185 75 -5 5.11 0.1909 WVFGRD96 86.0 185 75 -5 5.12 0.1931 WVFGRD96 88.0 185 75 -5 5.12 0.1939 WVFGRD96 90.0 185 80 -5 5.12 0.1947 WVFGRD96 92.0 185 80 -5 5.12 0.1958 WVFGRD96 94.0 185 80 -5 5.12 0.1965 WVFGRD96 96.0 185 80 -5 5.13 0.1969 WVFGRD96 98.0 185 80 -5 5.13 0.1972 WVFGRD96 100.0 185 80 -5 5.13 0.1975 WVFGRD96 102.0 185 85 -5 5.13 0.1973 WVFGRD96 104.0 185 85 -5 5.13 0.1977 WVFGRD96 106.0 185 90 -5 5.13 0.1999 WVFGRD96 108.0 185 90 -5 5.13 0.1993
The best solution is
WVFGRD96 12.0 140 30 85 4.81 0.6936
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: