Location

2014/04/05 14:04:49 -20.353 -70.864 10.0 4.8 Chile

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2014/04/05 14:04:49:0 -20.35  -70.86  10.0 4.8 Chile
 
 Stations used:
   CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB08 CX.PB09 
   CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX 
   GT.LPAZ IU.LVC 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 2.07e+23 dyne-cm
  Mw = 4.81 
  Z  = 12 km
  Plane   Strike  Dip  Rake
   NP1      326    60    93
   NP2      140    30    85
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.07e+23     75     244
    N   0.00e+00      2     144
    P  -2.07e+23     15      54

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -6.48e+22
       Mxy    -8.62e+22
       Mxz    -5.42e+22
       Myy    -1.13e+23
       Myz    -8.88e+22
       Mzz     1.78e+23
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              -######---------------------           
             ############------------------          
           --##############--------------   -        
          --#################------------ P --       
         ---###################----------   ---      
        ---######################---------------     
        ---#######################--------------     
       -----#######################--------------    
       -----########################-------------    
       -----#########   #############------------    
       ------######## T ##############-----------    
        ------#######   ###############---------     
        -------########################---------     
         -------########################-------      
          -------#######################------       
           --------#####################-----        
             ---------##################---          
              -----------###############--           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.78e+23  -5.42e+22   8.88e+22 
 -5.42e+22  -6.48e+22   8.62e+22 
  8.88e+22   8.62e+22  -1.13e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140405140449/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 140
      DIP = 30
     RAKE = 85
       MW = 4.81
       HS = 12.0

The NDK file is 20140405140449.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2014/04/05 14:04:49:0 -20.35  -70.86  10.0 4.8 Chile
 
 Stations used:
   CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB08 CX.PB09 
   CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX 
   GT.LPAZ IU.LVC 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 2.07e+23 dyne-cm
  Mw = 4.81 
  Z  = 12 km
  Plane   Strike  Dip  Rake
   NP1      326    60    93
   NP2      140    30    85
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.07e+23     75     244
    N   0.00e+00      2     144
    P  -2.07e+23     15      54

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -6.48e+22
       Mxy    -8.62e+22
       Mxz    -5.42e+22
       Myy    -1.13e+23
       Myz    -8.88e+22
       Mzz     1.78e+23
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              -######---------------------           
             ############------------------          
           --##############--------------   -        
          --#################------------ P --       
         ---###################----------   ---      
        ---######################---------------     
        ---#######################--------------     
       -----#######################--------------    
       -----########################-------------    
       -----#########   #############------------    
       ------######## T ##############-----------    
        ------#######   ###############---------     
        -------########################---------     
         -------########################-------      
          -------#######################------       
           --------#####################-----        
             ---------##################---          
              -----------###############--           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.78e+23  -5.42e+22   8.88e+22 
 -5.42e+22  -6.48e+22   8.62e+22 
  8.88e+22   8.62e+22  -1.13e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140405140449/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   280    70    30   4.53 0.3742
WVFGRD96    4.0   280    85    60   4.65 0.3600
WVFGRD96    6.0   120    15    55   4.68 0.4833
WVFGRD96    8.0   130    20    70   4.78 0.5734
WVFGRD96   10.0   140    25    85   4.80 0.6536
WVFGRD96   12.0   140    30    85   4.81 0.6936
WVFGRD96   14.0   140    35    85   4.82 0.6878
WVFGRD96   16.0   145    35    90   4.81 0.6526
WVFGRD96   18.0   320    55    85   4.81 0.6042
WVFGRD96   20.0   315    60    80   4.80 0.5517
WVFGRD96   22.0   165    45   -60   4.81 0.5217
WVFGRD96   24.0   165    45   -60   4.81 0.4923
WVFGRD96   26.0   170    45   -55   4.82 0.4619
WVFGRD96   28.0   175    45   -50   4.82 0.4309
WVFGRD96   30.0   175    45   -50   4.83 0.4001
WVFGRD96   32.0   175    45   -50   4.83 0.3687
WVFGRD96   34.0   170    40   -60   4.83 0.3380
WVFGRD96   36.0   175    40   -55   4.83 0.3093
WVFGRD96   38.0   175    40   -55   4.85 0.2825
WVFGRD96   40.0   165    35   -65   4.97 0.2752
WVFGRD96   42.0   170    40   -55   4.97 0.2519
WVFGRD96   44.0   170    40   -55   4.98 0.2355
WVFGRD96   46.0   180    50   -25   5.00 0.2213
WVFGRD96   48.0   180    50   -25   5.01 0.2101
WVFGRD96   50.0   180    55   -25   5.02 0.2002
WVFGRD96   52.0   185    55   -20   5.02 0.1919
WVFGRD96   54.0   185    55   -15   5.03 0.1859
WVFGRD96   56.0   185    55   -15   5.04 0.1817
WVFGRD96   58.0   185    60   -10   5.05 0.1798
WVFGRD96   60.0   185    65   -10   5.05 0.1812
WVFGRD96   62.0   185    65   -10   5.06 0.1831
WVFGRD96   64.0   185    65   -10   5.07 0.1840
WVFGRD96   66.0   185    65   -10   5.07 0.1831
WVFGRD96   68.0   185    70    -5   5.08 0.1834
WVFGRD96   70.0   185    70    -5   5.08 0.1840
WVFGRD96   72.0   185    70    -5   5.09 0.1846
WVFGRD96   74.0   185    70    -5   5.09 0.1857
WVFGRD96   76.0   185    70    -5   5.10 0.1848
WVFGRD96   78.0   185    70    -5   5.10 0.1861
WVFGRD96   80.0   185    75    -5   5.10 0.1885
WVFGRD96   82.0   185    75    -5   5.11 0.1905
WVFGRD96   84.0   185    75    -5   5.11 0.1909
WVFGRD96   86.0   185    75    -5   5.12 0.1931
WVFGRD96   88.0   185    75    -5   5.12 0.1939
WVFGRD96   90.0   185    80    -5   5.12 0.1947
WVFGRD96   92.0   185    80    -5   5.12 0.1958
WVFGRD96   94.0   185    80    -5   5.12 0.1965
WVFGRD96   96.0   185    80    -5   5.13 0.1969
WVFGRD96   98.0   185    80    -5   5.13 0.1972
WVFGRD96  100.0   185    80    -5   5.13 0.1975
WVFGRD96  102.0   185    85    -5   5.13 0.1973
WVFGRD96  104.0   185    85    -5   5.13 0.1977
WVFGRD96  106.0   185    90    -5   5.13 0.1999
WVFGRD96  108.0   185    90    -5   5.13 0.1993

The best solution is

WVFGRD96   12.0   140    30    85   4.81 0.6936

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Sat Apr 5 15:14:52 CDT 2014