2014/04/05 06:32:09 -20.090 -70.910 9.9 4.8 Chile
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/04/05 06:32:09:0 -20.09 -70.91 9.9 4.8 Chile Stations used: CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 4.52e+22 dyne-cm Mw = 4.37 Z = 18 km Plane Strike Dip Rake NP1 170 60 90 NP2 350 30 90 Principal Axes: Axis Value Plunge Azimuth T 4.52e+22 75 80 N 0.00e+00 -0 170 P -4.52e+22 15 260 Moment Tensor: (dyne-cm) Component Value Mxx -1.18e+21 Mxy -6.69e+21 Mxz 3.92e+21 Myy -3.80e+22 Myz 2.22e+22 Mzz 3.91e+22 ---#####------ ------##########------ --------#############------- --------################------ ----------#################------- ----------####################------ -----------#####################------ ------------#####################------- ------------######################------ -------------########### ########------- -------------########### T #########------ -- --------########### #########------ -- P ---------######################------ - ---------######################----- --------------####################------ -------------####################----- -------------##################----- -------------################----- ------------##############---- ------------############---- -----------########--- ---------###-- Global CMT Convention Moment Tensor: R T P 3.91e+22 3.92e+21 -2.22e+22 3.92e+21 -1.18e+21 6.69e+21 -2.22e+22 6.69e+21 -3.80e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140405063209/index.html |
STK = 170 DIP = 60 RAKE = 90 MW = 4.37 HS = 18.0
The NDK file is 20140405063209.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/04/05 06:32:09:0 -20.09 -70.91 9.9 4.8 Chile Stations used: CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 4.52e+22 dyne-cm Mw = 4.37 Z = 18 km Plane Strike Dip Rake NP1 170 60 90 NP2 350 30 90 Principal Axes: Axis Value Plunge Azimuth T 4.52e+22 75 80 N 0.00e+00 -0 170 P -4.52e+22 15 260 Moment Tensor: (dyne-cm) Component Value Mxx -1.18e+21 Mxy -6.69e+21 Mxz 3.92e+21 Myy -3.80e+22 Myz 2.22e+22 Mzz 3.91e+22 ---#####------ ------##########------ --------#############------- --------################------ ----------#################------- ----------####################------ -----------#####################------ ------------#####################------- ------------######################------ -------------########### ########------- -------------########### T #########------ -- --------########### #########------ -- P ---------######################------ - ---------######################----- --------------####################------ -------------####################----- -------------##################----- -------------################----- ------------##############---- ------------############---- -----------########--- ---------###-- Global CMT Convention Moment Tensor: R T P 3.91e+22 3.92e+21 -2.22e+22 3.92e+21 -1.18e+21 6.69e+21 -2.22e+22 6.69e+21 -3.80e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140405063209/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 160 40 -90 4.11 0.4277 WVFGRD96 4.0 350 80 -80 4.21 0.3448 WVFGRD96 6.0 170 90 80 4.20 0.4693 WVFGRD96 8.0 170 90 80 4.28 0.5523 WVFGRD96 10.0 170 85 80 4.28 0.6248 WVFGRD96 12.0 170 70 85 4.31 0.6938 WVFGRD96 14.0 350 30 90 4.35 0.7593 WVFGRD96 16.0 165 60 85 4.36 0.8028 WVFGRD96 18.0 170 60 90 4.37 0.8199 WVFGRD96 20.0 355 30 95 4.37 0.8185 WVFGRD96 22.0 165 60 85 4.39 0.8053 WVFGRD96 24.0 165 60 85 4.39 0.7819 WVFGRD96 26.0 165 60 85 4.40 0.7523 WVFGRD96 28.0 165 60 85 4.41 0.7176 WVFGRD96 30.0 355 30 95 4.41 0.6785 WVFGRD96 32.0 365 30 110 4.42 0.6358 WVFGRD96 34.0 165 65 80 4.42 0.5906 WVFGRD96 36.0 165 65 80 4.42 0.5456 WVFGRD96 38.0 165 65 80 4.43 0.5024 WVFGRD96 40.0 365 20 110 4.55 0.4661 WVFGRD96 42.0 165 70 80 4.55 0.4265 WVFGRD96 44.0 165 70 80 4.55 0.3903 WVFGRD96 46.0 155 65 75 4.56 0.3580 WVFGRD96 48.0 155 65 70 4.56 0.3300 WVFGRD96 50.0 5 30 -65 4.57 0.3114 WVFGRD96 52.0 5 25 -70 4.57 0.2993 WVFGRD96 54.0 165 70 -95 4.57 0.2842 WVFGRD96 56.0 0 20 -75 4.58 0.2738 WVFGRD96 58.0 5 20 -70 4.58 0.2645 WVFGRD96 60.0 10 20 -65 4.59 0.2552 WVFGRD96 62.0 335 75 65 4.58 0.2536 WVFGRD96 64.0 335 75 65 4.59 0.2606 WVFGRD96 66.0 340 70 70 4.60 0.2654 WVFGRD96 68.0 340 70 70 4.61 0.2752 WVFGRD96 70.0 340 70 70 4.62 0.2836 WVFGRD96 72.0 345 65 75 4.63 0.2946 WVFGRD96 74.0 340 65 70 4.64 0.3013 WVFGRD96 76.0 340 65 70 4.65 0.3066 WVFGRD96 78.0 345 60 75 4.65 0.3143 WVFGRD96 80.0 340 60 75 4.66 0.3227 WVFGRD96 82.0 340 60 75 4.66 0.3256 WVFGRD96 84.0 340 60 75 4.67 0.3287 WVFGRD96 86.0 345 55 80 4.67 0.3328 WVFGRD96 88.0 340 55 75 4.67 0.3349 WVFGRD96 90.0 340 55 75 4.68 0.3366 WVFGRD96 92.0 180 35 105 4.68 0.3401 WVFGRD96 94.0 180 40 105 4.68 0.3405 WVFGRD96 96.0 340 55 75 4.68 0.3444 WVFGRD96 98.0 345 50 80 4.69 0.3455 WVFGRD96 100.0 345 50 80 4.69 0.3485 WVFGRD96 102.0 345 50 80 4.69 0.3491 WVFGRD96 104.0 345 50 80 4.69 0.3482 WVFGRD96 106.0 345 50 80 4.69 0.3501 WVFGRD96 108.0 350 50 85 4.69 0.3530
The best solution is
WVFGRD96 18.0 170 60 90 4.37 0.8199
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: