2014/04/05 05:44:55 -20.131 -70.445 19.0 5.3 Chile
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/04/05 05:44:55:0 -20.13 -70.44 19.0 5.3 Chile Stations used: CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 4.57e+23 dyne-cm Mw = 5.04 Z = 26 km Plane Strike Dip Rake NP1 165 70 85 NP2 359 21 103 Principal Axes: Axis Value Plunge Azimuth T 4.57e+23 65 67 N 0.00e+00 5 167 P -4.57e+23 25 259 Moment Tensor: (dyne-cm) Component Value Mxx -8.89e+20 Mxy -4.08e+22 Mxz 1.03e+23 Myy -2.92e+23 Myz 3.33e+23 Mzz 2.93e+23 -##########--- -----##############--- --------################---- --------###################--- ----------####################---- -----------#####################---- ------------######################---- --------------######################---- --------------########### ########---- ---------------########### T #########---- ----------------########## #########---- ---- ---------######################---- ---- P ---------######################---- --- ----------####################---- -----------------###################---- ----------------##################---- ----------------################---- ----------------##############---- ---------------############--- ---------------#########---- --------------#####--- -----------#-- Global CMT Convention Moment Tensor: R T P 2.93e+23 1.03e+23 -3.33e+23 1.03e+23 -8.89e+20 4.08e+22 -3.33e+23 4.08e+22 -2.92e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140405054455/index.html |
STK = 165 DIP = 70 RAKE = 85 MW = 5.04 HS = 26.0
The NDK file is 20140405054455.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/04/05 05:44:55:0 -20.13 -70.44 19.0 5.3 Chile Stations used: CX.MNMCX CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB08 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 4.57e+23 dyne-cm Mw = 5.04 Z = 26 km Plane Strike Dip Rake NP1 165 70 85 NP2 359 21 103 Principal Axes: Axis Value Plunge Azimuth T 4.57e+23 65 67 N 0.00e+00 5 167 P -4.57e+23 25 259 Moment Tensor: (dyne-cm) Component Value Mxx -8.89e+20 Mxy -4.08e+22 Mxz 1.03e+23 Myy -2.92e+23 Myz 3.33e+23 Mzz 2.93e+23 -##########--- -----##############--- --------################---- --------###################--- ----------####################---- -----------#####################---- ------------######################---- --------------######################---- --------------########### ########---- ---------------########### T #########---- ----------------########## #########---- ---- ---------######################---- ---- P ---------######################---- --- ----------####################---- -----------------###################---- ----------------##################---- ----------------################---- ----------------##############---- ---------------############--- ---------------#########---- --------------#####--- -----------#-- Global CMT Convention Moment Tensor: R T P 2.93e+23 1.03e+23 -3.33e+23 1.03e+23 -8.89e+20 4.08e+22 -3.33e+23 4.08e+22 -2.92e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140405054455/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 150 45 90 4.68 0.3396 WVFGRD96 4.0 295 80 -60 4.69 0.2345 WVFGRD96 6.0 260 10 -5 4.77 0.3281 WVFGRD96 8.0 265 10 0 4.86 0.4106 WVFGRD96 10.0 295 10 35 4.88 0.5078 WVFGRD96 12.0 155 70 80 4.90 0.6027 WVFGRD96 14.0 155 70 80 4.92 0.6859 WVFGRD96 16.0 160 65 85 4.96 0.7529 WVFGRD96 18.0 160 65 85 4.97 0.8010 WVFGRD96 20.0 165 65 85 4.99 0.8328 WVFGRD96 22.0 165 65 85 5.01 0.8497 WVFGRD96 24.0 165 70 85 5.02 0.8580 WVFGRD96 26.0 165 70 85 5.04 0.8585 WVFGRD96 28.0 165 70 85 5.05 0.8508 WVFGRD96 30.0 165 70 85 5.06 0.8358 WVFGRD96 32.0 165 70 85 5.07 0.8138 WVFGRD96 34.0 165 70 85 5.08 0.7865 WVFGRD96 36.0 165 70 85 5.08 0.7557 WVFGRD96 38.0 165 70 85 5.09 0.7246 WVFGRD96 40.0 150 75 80 5.20 0.6909 WVFGRD96 42.0 150 75 80 5.21 0.6652 WVFGRD96 44.0 150 75 80 5.22 0.6404 WVFGRD96 46.0 145 75 75 5.22 0.6175 WVFGRD96 48.0 145 75 75 5.22 0.5959 WVFGRD96 50.0 145 75 75 5.23 0.5746 WVFGRD96 52.0 145 75 75 5.24 0.5536 WVFGRD96 54.0 145 75 80 5.24 0.5340 WVFGRD96 56.0 145 75 80 5.25 0.5153 WVFGRD96 58.0 145 75 80 5.26 0.4965 WVFGRD96 60.0 145 75 85 5.26 0.4790 WVFGRD96 62.0 145 75 85 5.27 0.4622 WVFGRD96 64.0 135 80 80 5.26 0.4490 WVFGRD96 66.0 135 80 80 5.26 0.4360 WVFGRD96 68.0 135 80 80 5.27 0.4231 WVFGRD96 70.0 145 80 90 5.29 0.4109 WVFGRD96 72.0 145 80 90 5.29 0.4000 WVFGRD96 74.0 315 10 80 5.30 0.3893 WVFGRD96 76.0 310 10 75 5.30 0.3796 WVFGRD96 78.0 295 15 55 5.32 0.3703 WVFGRD96 80.0 290 15 50 5.32 0.3618 WVFGRD96 82.0 205 15 -50 5.29 0.3574 WVFGRD96 84.0 210 20 -50 5.29 0.3567 WVFGRD96 86.0 205 20 -55 5.30 0.3567 WVFGRD96 88.0 200 20 -60 5.30 0.3572 WVFGRD96 90.0 200 20 -60 5.30 0.3575 WVFGRD96 92.0 190 20 -70 5.30 0.3577 WVFGRD96 94.0 170 30 -70 5.29 0.3651 WVFGRD96 96.0 170 30 -70 5.29 0.3707 WVFGRD96 98.0 165 35 -75 5.29 0.3800 WVFGRD96 100.0 165 35 -75 5.29 0.3853 WVFGRD96 102.0 165 35 -75 5.30 0.3939 WVFGRD96 104.0 165 35 -75 5.31 0.3985 WVFGRD96 106.0 165 35 -75 5.31 0.4041 WVFGRD96 108.0 165 35 -75 5.31 0.4081
The best solution is
WVFGRD96 26.0 165 70 85 5.04 0.8585
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: