Location

2014/04/04 01:37:51 -20.621 -70.739 20.0 6.1 Chile

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2014/04/04 01:37:51:0 -20.62  -70.74  20.0 6.1 Chile
 
 Stations used:
   CX.MNMCX CX.PB01 CX.PB04 CX.PB07 CX.PB09 CX.PB10 CX.PB11 
   CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 1.40e+25 dyne-cm
  Mw = 6.03 
  Z  = 24 km
  Plane   Strike  Dip  Rake
   NP1      165    60    75
   NP2       13    33   114
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.40e+25     71      41
    N   0.00e+00     13     173
    P  -1.40e+25     14     266

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     7.82e+23
       Mxy    -2.10e+23
       Mxz     3.49e+24
       Myy    -1.25e+25
       Myz     6.05e+24
       Mzz     1.17e+25
                                                     
                                                     
                                                     
                                                     
                     -############-                  
                 ----###############---              
              -------#################----           
             -------###################----          
           ---------####################-----        
          ---------######################-----       
         ----------######################------      
        -----------#######################------     
        -----------##########   ##########------     
       -------------######### T ##########-------    
       -   ---------#########   ##########-------    
       - P ---------######################-------    
       -   ----------#####################-------    
        -------------####################-------     
        --------------###################-------     
         --------------#################-------      
          --------------###############-------       
           --------------############--------        
             -------------##########-------          
              --------------######--------           
                 -------------#--------              
                     ------#####---                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.17e+25   3.49e+24  -6.05e+24 
  3.49e+24   7.82e+23   2.10e+23 
 -6.05e+24   2.10e+23  -1.25e+25 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140404013751/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 165
      DIP = 60
     RAKE = 75
       MW = 6.03
       HS = 24.0

The NDK file is 20140404013751.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
USGSMT
 USGS/SLU Moment Tensor Solution
 ENS  2014/04/04 01:37:51:0 -20.62  -70.74  20.0 6.1 Chile
 
 Stations used:
   CX.MNMCX CX.PB01 CX.PB04 CX.PB07 CX.PB09 CX.PB10 CX.PB11 
   CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 1.40e+25 dyne-cm
  Mw = 6.03 
  Z  = 24 km
  Plane   Strike  Dip  Rake
   NP1      165    60    75
   NP2       13    33   114
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.40e+25     71      41
    N   0.00e+00     13     173
    P  -1.40e+25     14     266

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     7.82e+23
       Mxy    -2.10e+23
       Mxz     3.49e+24
       Myy    -1.25e+25
       Myz     6.05e+24
       Mzz     1.17e+25
                                                     
                                                     
                                                     
                                                     
                     -############-                  
                 ----###############---              
              -------#################----           
             -------###################----          
           ---------####################-----        
          ---------######################-----       
         ----------######################------      
        -----------#######################------     
        -----------##########   ##########------     
       -------------######### T ##########-------    
       -   ---------#########   ##########-------    
       - P ---------######################-------    
       -   ----------#####################-------    
        -------------####################-------     
        --------------###################-------     
         --------------#################-------      
          --------------###############-------       
           --------------############--------        
             -------------##########-------          
              --------------######--------           
                 -------------#--------              
                     ------#####---                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.17e+25   3.49e+24  -6.05e+24 
  3.49e+24   7.82e+23   2.10e+23 
 -6.05e+24   2.10e+23  -1.25e+25 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140404013751/index.html
	
Type  Magnitude  Depth         NP1         NP2     Author  Catalog  Contributor
Mww      6.1     25.5 km  161, 70, 82   5, 22, 112  us  us  us
Mwb      6.1     20.0 km  157, 58, 85 347, 32,  98  us  us  us
Mwc      6.3     18.3 km  156, 70, 80   3, 22, 115  gcmt  gcmt  us

Mwr      6.03    24   km  165, 60, 75  13, 33, 114  SLU
        

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0    80    85   -10   5.65 0.3524
WVFGRD96    4.0    80    90   -30   5.73 0.3383
WVFGRD96    6.0   260    25    -5   5.80 0.3578
WVFGRD96    8.0   255    20   -10   5.89 0.4282
WVFGRD96   10.0   245    20   -25   5.91 0.5069
WVFGRD96   12.0   245    20   -25   5.92 0.5632
WVFGRD96   14.0   165    70    85   5.94 0.6139
WVFGRD96   16.0   165    65    80   5.96 0.6687
WVFGRD96   18.0   165    60    80   5.98 0.7097
WVFGRD96   20.0   165    60    75   6.00 0.7358
WVFGRD96   22.0   165    60    75   6.02 0.7483
WVFGRD96   24.0   165    60    75   6.03 0.7523
WVFGRD96   26.0   160    65    75   6.04 0.7497
WVFGRD96   28.0   160    65    75   6.06 0.7402
WVFGRD96   30.0   160    65    75   6.07 0.7241
WVFGRD96   32.0   160    65    75   6.08 0.7019
WVFGRD96   34.0   165    65    80   6.09 0.6744
WVFGRD96   36.0   165    65    80   6.10 0.6431
WVFGRD96   38.0   165    65    80   6.11 0.6099
WVFGRD96   40.0   165    70    85   6.24 0.5776
WVFGRD96   42.0   165    70    85   6.25 0.5400
WVFGRD96   44.0   165    70    85   6.25 0.4993
WVFGRD96   46.0   165    70    85   6.25 0.4586
WVFGRD96   48.0   165    70    85   6.26 0.4191
WVFGRD96   50.0   165    70    85   6.25 0.3816
WVFGRD96   52.0   165    70    85   6.25 0.3466
WVFGRD96   54.0   160    75   -45   6.28 0.3227
WVFGRD96   56.0   160    75   -45   6.29 0.3145
WVFGRD96   58.0   160    80   -45   6.29 0.3105
WVFGRD96   60.0   160    80   -45   6.30 0.3073
WVFGRD96   62.0   160    85   -50   6.31 0.3042
WVFGRD96   64.0   345    90    45   6.31 0.3001
WVFGRD96   66.0   160    85   -50   6.32 0.3018
WVFGRD96   68.0   345    90    45   6.33 0.2978
WVFGRD96   70.0   155    90   -45   6.32 0.2953
WVFGRD96   72.0   155    90   -45   6.33 0.2937
WVFGRD96   74.0   155    90   -45   6.34 0.2931
WVFGRD96   76.0   155    90   -45   6.35 0.2916
WVFGRD96   78.0   155    90   -45   6.35 0.2917
WVFGRD96   80.0   155    90   -45   6.36 0.2917
WVFGRD96   82.0   155    90   -45   6.36 0.2895
WVFGRD96   84.0   335    85    45   6.36 0.2891
WVFGRD96   86.0   155    90   -45   6.37 0.2842
WVFGRD96   88.0   170    35    80   6.32 0.2860
WVFGRD96   90.0   165    40    75   6.32 0.2867
WVFGRD96   92.0   165    40    75   6.32 0.2859
WVFGRD96   94.0   165    40    75   6.32 0.2864
WVFGRD96   96.0   145    35    55   6.33 0.2882
WVFGRD96   98.0   155    40    65   6.33 0.2922
WVFGRD96  100.0   155    40    65   6.33 0.2979
WVFGRD96  102.0   155    40    65   6.33 0.3042
WVFGRD96  104.0   160    40    70   6.33 0.3070
WVFGRD96  106.0   160    40    70   6.34 0.3121
WVFGRD96  108.0   160    40    70   6.34 0.3159

The best solution is

WVFGRD96   24.0   165    60    75   6.03 0.7523

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Fri Apr 4 19:50:04 CDT 2014