Location

2014/04/03 01:58:31 -20.268 -70.556 22.8 6.5 Chile

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2014/04/03 01:58:31:0 -20.27  -70.56  22.8 6.5 Chile
 
 Stations used:
   CX.MNMCX CX.PB01 CX.PB04 CX.PB07 CX.PB09 CX.PB10 CX.PB11 
   CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 4.22e+25 dyne-cm
  Mw = 6.35 
  Z  = 32 km
  Plane   Strike  Dip  Rake
   NP1      175    70    80
   NP2       22    22   116
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.22e+25     64      69
    N   0.00e+00      9     178
    P  -4.22e+25     24     273

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     9.92e+23
       Mxy     4.46e+24
       Mxz     5.27e+24
       Myy    -2.77e+25
       Myz     3.15e+25
       Mzz     2.67e+25
                                                     
                                                     
                                                     
                                                     
                     -----#########                  
                 --------#############-              
              ----------################--           
             -----------#################--          
           ------------###################---        
          -------------####################---       
         --------------#####################---      
        ---------------#####################----     
        ---------------##########   #########---     
       ----   ---------########## T #########----    
       ---- P ---------##########   #########----    
       ----   ---------######################----    
       ----------------#####################-----    
        ---------------#####################----     
        ----------------###################-----     
         ---------------##################-----      
          ---------------################-----       
           --------------###############-----        
             -------------############-----          
              -------------#########------           
                 -----------####-------              
                     -----###------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  2.67e+25   5.27e+24  -3.15e+25 
  5.27e+24   9.92e+23  -4.46e+24 
 -3.15e+25  -4.46e+24  -2.77e+25 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140403015831/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 175
      DIP = 70
     RAKE = 80
       MW = 6.35
       HS = 32.0

The NDK file is 20140403015831.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
USGSMT
 USGS/SLU Moment Tensor Solution
 ENS  2014/04/03 01:58:31:0 -20.27  -70.56  22.8 6.5 Chile
 
 Stations used:
   CX.MNMCX CX.PB01 CX.PB04 CX.PB07 CX.PB09 CX.PB10 CX.PB11 
   CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 4.22e+25 dyne-cm
  Mw = 6.35 
  Z  = 32 km
  Plane   Strike  Dip  Rake
   NP1      175    70    80
   NP2       22    22   116
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.22e+25     64      69
    N   0.00e+00      9     178
    P  -4.22e+25     24     273

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     9.92e+23
       Mxy     4.46e+24
       Mxz     5.27e+24
       Myy    -2.77e+25
       Myz     3.15e+25
       Mzz     2.67e+25
                                                     
                                                     
                                                     
                                                     
                     -----#########                  
                 --------#############-              
              ----------################--           
             -----------#################--          
           ------------###################---        
          -------------####################---       
         --------------#####################---      
        ---------------#####################----     
        ---------------##########   #########---     
       ----   ---------########## T #########----    
       ---- P ---------##########   #########----    
       ----   ---------######################----    
       ----------------#####################-----    
        ---------------#####################----     
        ----------------###################-----     
         ---------------##################-----      
          ---------------################-----       
           --------------###############-----        
             -------------############-----          
              -------------#########------           
                 -----------####-------              
                     -----###------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  2.67e+25   5.27e+24  -3.15e+25 
  5.27e+24   9.92e+23  -4.46e+24 
 -3.15e+25  -4.46e+24  -2.77e+25 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140403015831/index.html
	
The USGS and other MT's are

Type Magnitude Depth         NP1          NP2     Author Catalog Contributor
Mwb     6.5     28.0 km 173, 65, 79   18, 27, 112  us      us      us
Mww     6.5     19.5 km 162, 67, 80    7, 25, 113  us      us      us
Mww     6.5     19.5 km 162, 67, 80    7, 25, 113  us      us      us
Mwc     6.6     33.8 km 165, 67, 87  352, 23,  96 gcmt    gcmt     us

Mwr     6.35    32  km  175, 70, 80   22, 22, 116 SLU     SLU      
        

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0    20    45   -90   5.98 0.3404
WVFGRD96    4.0    90    85    -5   5.94 0.2974
WVFGRD96    6.0   265    30   -10   6.02 0.2921
WVFGRD96    8.0   255    20   -20   6.12 0.3630
WVFGRD96   10.0   250    20   -25   6.14 0.4529
WVFGRD96   12.0   250    20   -25   6.16 0.5273
WVFGRD96   14.0   245    20   -30   6.19 0.5882
WVFGRD96   16.0   250    20   -25   6.21 0.6380
WVFGRD96   18.0   335    20    65   6.23 0.6807
WVFGRD96   20.0   345    20    75   6.25 0.7278
WVFGRD96   22.0   350    20    80   6.27 0.7665
WVFGRD96   24.0   175    70    90   6.29 0.7990
WVFGRD96   26.0   175    70    85   6.31 0.8252
WVFGRD96   28.0   175    70    85   6.32 0.8426
WVFGRD96   30.0    10    20   105   6.34 0.8500
WVFGRD96   32.0   175    70    80   6.35 0.8500
WVFGRD96   34.0   175    70    80   6.37 0.8409
WVFGRD96   36.0   175    70    80   6.37 0.8252
WVFGRD96   38.0   175    70    80   6.38 0.8055
WVFGRD96   40.0   175    75    85   6.52 0.7751
WVFGRD96   42.0   175    75    85   6.53 0.7516
WVFGRD96   44.0   175    70    80   6.53 0.7277
WVFGRD96   46.0   175    70    80   6.54 0.7040
WVFGRD96   48.0   175    70    80   6.55 0.6791
WVFGRD96   50.0   175    70    80   6.56 0.6534
WVFGRD96   52.0   175    75    80   6.56 0.6287
WVFGRD96   54.0   175    75    80   6.57 0.6055
WVFGRD96   56.0   175    75    80   6.57 0.5832
WVFGRD96   58.0   175    75    80   6.58 0.5620
WVFGRD96   60.0   170    75    80   6.57 0.5417
WVFGRD96   62.0   170    75    80   6.58 0.5228
WVFGRD96   64.0   170    75    80   6.58 0.5046
WVFGRD96   66.0   170    80    80   6.58 0.4904
WVFGRD96   68.0   170    80    80   6.59 0.4766
WVFGRD96   70.0   170    80    80   6.59 0.4637
WVFGRD96   72.0   170    80    80   6.59 0.4516
WVFGRD96   74.0   170    80    85   6.60 0.4399
WVFGRD96   76.0   170    85    80   6.60 0.4285
WVFGRD96   78.0   170    85    80   6.60 0.4203
WVFGRD96   80.0   165    85    80   6.60 0.4121
WVFGRD96   82.0   350    90   -80   6.60 0.3988
WVFGRD96   84.0   345    90   -80   6.60 0.3951
WVFGRD96   86.0   345    90   -80   6.60 0.3926
WVFGRD96   88.0   165    90    80   6.61 0.3894
WVFGRD96   90.0   165    90    80   6.61 0.3856
WVFGRD96   92.0   345    90   -80   6.62 0.3822
WVFGRD96   94.0   345    85   -80   6.61 0.3820
WVFGRD96   96.0   165    90    80   6.62 0.3738
WVFGRD96   98.0   345    85   -80   6.62 0.3819
WVFGRD96  100.0   345    85   -80   6.63 0.3808
WVFGRD96  102.0   345    80   -80   6.62 0.3792
WVFGRD96  104.0   345    80   -80   6.62 0.3808
WVFGRD96  106.0   345    80   -80   6.63 0.3816
WVFGRD96  108.0   345    80   -80   6.63 0.3818

The best solution is

WVFGRD96   32.0   175    70    80   6.35 0.8500

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Fri Apr 4 18:59:47 CDT 2014