2014/04/03 01:58:31 -20.268 -70.556 22.8 6.5 Chile
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/04/03 01:58:31:0 -20.27 -70.56 22.8 6.5 Chile Stations used: CX.MNMCX CX.PB01 CX.PB04 CX.PB07 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 4.22e+25 dyne-cm Mw = 6.35 Z = 32 km Plane Strike Dip Rake NP1 175 70 80 NP2 22 22 116 Principal Axes: Axis Value Plunge Azimuth T 4.22e+25 64 69 N 0.00e+00 9 178 P -4.22e+25 24 273 Moment Tensor: (dyne-cm) Component Value Mxx 9.92e+23 Mxy 4.46e+24 Mxz 5.27e+24 Myy -2.77e+25 Myz 3.15e+25 Mzz 2.67e+25 -----######### --------#############- ----------################-- -----------#################-- ------------###################--- -------------####################--- --------------#####################--- ---------------#####################---- ---------------########## #########--- ---- ---------########## T #########---- ---- P ---------########## #########---- ---- ---------######################---- ----------------#####################----- ---------------#####################---- ----------------###################----- ---------------##################----- ---------------################----- --------------###############----- -------------############----- -------------#########------ -----------####------- -----###------ Global CMT Convention Moment Tensor: R T P 2.67e+25 5.27e+24 -3.15e+25 5.27e+24 9.92e+23 -4.46e+24 -3.15e+25 -4.46e+24 -2.77e+25 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140403015831/index.html |
STK = 175 DIP = 70 RAKE = 80 MW = 6.35 HS = 32.0
The NDK file is 20140403015831.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/04/03 01:58:31:0 -20.27 -70.56 22.8 6.5 Chile Stations used: CX.MNMCX CX.PB01 CX.PB04 CX.PB07 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 4.22e+25 dyne-cm Mw = 6.35 Z = 32 km Plane Strike Dip Rake NP1 175 70 80 NP2 22 22 116 Principal Axes: Axis Value Plunge Azimuth T 4.22e+25 64 69 N 0.00e+00 9 178 P -4.22e+25 24 273 Moment Tensor: (dyne-cm) Component Value Mxx 9.92e+23 Mxy 4.46e+24 Mxz 5.27e+24 Myy -2.77e+25 Myz 3.15e+25 Mzz 2.67e+25 -----######### --------#############- ----------################-- -----------#################-- ------------###################--- -------------####################--- --------------#####################--- ---------------#####################---- ---------------########## #########--- ---- ---------########## T #########---- ---- P ---------########## #########---- ---- ---------######################---- ----------------#####################----- ---------------#####################---- ----------------###################----- ---------------##################----- ---------------################----- --------------###############----- -------------############----- -------------#########------ -----------####------- -----###------ Global CMT Convention Moment Tensor: R T P 2.67e+25 5.27e+24 -3.15e+25 5.27e+24 9.92e+23 -4.46e+24 -3.15e+25 -4.46e+24 -2.77e+25 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140403015831/index.html |
The USGS and other MT's are Type Magnitude Depth NP1 NP2 Author Catalog Contributor Mwb 6.5 28.0 km 173, 65, 79 18, 27, 112 us us us Mww 6.5 19.5 km 162, 67, 80 7, 25, 113 us us us Mww 6.5 19.5 km 162, 67, 80 7, 25, 113 us us us Mwc 6.6 33.8 km 165, 67, 87 352, 23, 96 gcmt gcmt us Mwr 6.35 32 km 175, 70, 80 22, 22, 116 SLU SLU |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 20 45 -90 5.98 0.3404 WVFGRD96 4.0 90 85 -5 5.94 0.2974 WVFGRD96 6.0 265 30 -10 6.02 0.2921 WVFGRD96 8.0 255 20 -20 6.12 0.3630 WVFGRD96 10.0 250 20 -25 6.14 0.4529 WVFGRD96 12.0 250 20 -25 6.16 0.5273 WVFGRD96 14.0 245 20 -30 6.19 0.5882 WVFGRD96 16.0 250 20 -25 6.21 0.6380 WVFGRD96 18.0 335 20 65 6.23 0.6807 WVFGRD96 20.0 345 20 75 6.25 0.7278 WVFGRD96 22.0 350 20 80 6.27 0.7665 WVFGRD96 24.0 175 70 90 6.29 0.7990 WVFGRD96 26.0 175 70 85 6.31 0.8252 WVFGRD96 28.0 175 70 85 6.32 0.8426 WVFGRD96 30.0 10 20 105 6.34 0.8500 WVFGRD96 32.0 175 70 80 6.35 0.8500 WVFGRD96 34.0 175 70 80 6.37 0.8409 WVFGRD96 36.0 175 70 80 6.37 0.8252 WVFGRD96 38.0 175 70 80 6.38 0.8055 WVFGRD96 40.0 175 75 85 6.52 0.7751 WVFGRD96 42.0 175 75 85 6.53 0.7516 WVFGRD96 44.0 175 70 80 6.53 0.7277 WVFGRD96 46.0 175 70 80 6.54 0.7040 WVFGRD96 48.0 175 70 80 6.55 0.6791 WVFGRD96 50.0 175 70 80 6.56 0.6534 WVFGRD96 52.0 175 75 80 6.56 0.6287 WVFGRD96 54.0 175 75 80 6.57 0.6055 WVFGRD96 56.0 175 75 80 6.57 0.5832 WVFGRD96 58.0 175 75 80 6.58 0.5620 WVFGRD96 60.0 170 75 80 6.57 0.5417 WVFGRD96 62.0 170 75 80 6.58 0.5228 WVFGRD96 64.0 170 75 80 6.58 0.5046 WVFGRD96 66.0 170 80 80 6.58 0.4904 WVFGRD96 68.0 170 80 80 6.59 0.4766 WVFGRD96 70.0 170 80 80 6.59 0.4637 WVFGRD96 72.0 170 80 80 6.59 0.4516 WVFGRD96 74.0 170 80 85 6.60 0.4399 WVFGRD96 76.0 170 85 80 6.60 0.4285 WVFGRD96 78.0 170 85 80 6.60 0.4203 WVFGRD96 80.0 165 85 80 6.60 0.4121 WVFGRD96 82.0 350 90 -80 6.60 0.3988 WVFGRD96 84.0 345 90 -80 6.60 0.3951 WVFGRD96 86.0 345 90 -80 6.60 0.3926 WVFGRD96 88.0 165 90 80 6.61 0.3894 WVFGRD96 90.0 165 90 80 6.61 0.3856 WVFGRD96 92.0 345 90 -80 6.62 0.3822 WVFGRD96 94.0 345 85 -80 6.61 0.3820 WVFGRD96 96.0 165 90 80 6.62 0.3738 WVFGRD96 98.0 345 85 -80 6.62 0.3819 WVFGRD96 100.0 345 85 -80 6.63 0.3808 WVFGRD96 102.0 345 80 -80 6.62 0.3792 WVFGRD96 104.0 345 80 -80 6.62 0.3808 WVFGRD96 106.0 345 80 -80 6.63 0.3816 WVFGRD96 108.0 345 80 -80 6.63 0.3818
The best solution is
WVFGRD96 32.0 175 70 80 6.35 0.8500
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: