2014/03/24 20:18:55 -27.874 -71.161 17.5 4.8 Chile
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/03/24 20:18:55:0 -27.87 -71.16 17.5 4.8 Chile Stations used: C.GO02 C.GO03 C.GO04 CX.PB15 G.PEL Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 2.34e+22 dyne-cm Mw = 4.18 Z = 22 km Plane Strike Dip Rake NP1 180 60 85 NP2 10 30 99 Principal Axes: Axis Value Plunge Azimuth T 2.34e+22 74 77 N 0.00e+00 4 182 P -2.34e+22 15 274 Moment Tensor: (dyne-cm) Component Value Mxx -3.09e+14 Mxy 1.77e+21 Mxz 1.02e+21 Myy -2.02e+22 Myz 1.17e+22 Mzz 2.02e+22 ------######-- --------###########--- ----------##############---- ----------################---- -----------##################----- ------------###################----- ------------#####################----- -------------#####################------ -------------######################----- -- --------########## ##########------ -- P --------########## T ##########------ -- --------########## ##########------ -------------######################------- -------------#####################------ -------------####################------- ------------####################------ ------------##################------ -----------################------- ----------##############------ ----------###########------- --------########------ ------##------ Global CMT Convention Moment Tensor: R T P 2.02e+22 1.02e+21 -1.17e+22 1.02e+21 -3.09e+14 -1.77e+21 -1.17e+22 -1.77e+21 -2.02e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140324201855/index.html |
STK = 180 DIP = 60 RAKE = 85 MW = 4.18 HS = 22.0
The NDK file is 20140324201855.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/03/24 20:18:55:0 -27.87 -71.16 17.5 4.8 Chile Stations used: C.GO02 C.GO03 C.GO04 CX.PB15 G.PEL Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 2.34e+22 dyne-cm Mw = 4.18 Z = 22 km Plane Strike Dip Rake NP1 180 60 85 NP2 10 30 99 Principal Axes: Axis Value Plunge Azimuth T 2.34e+22 74 77 N 0.00e+00 4 182 P -2.34e+22 15 274 Moment Tensor: (dyne-cm) Component Value Mxx -3.09e+14 Mxy 1.77e+21 Mxz 1.02e+21 Myy -2.02e+22 Myz 1.17e+22 Mzz 2.02e+22 ------######-- --------###########--- ----------##############---- ----------################---- -----------##################----- ------------###################----- ------------#####################----- -------------#####################------ -------------######################----- -- --------########## ##########------ -- P --------########## T ##########------ -- --------########## ##########------ -------------######################------- -------------#####################------ -------------####################------- ------------####################------ ------------##################------ -----------################------- ----------##############------ ----------###########------- --------########------ ------##------ Global CMT Convention Moment Tensor: R T P 2.02e+22 1.02e+21 -1.17e+22 1.02e+21 -3.09e+14 -1.77e+21 -1.17e+22 -1.77e+21 -2.02e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140324201855/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 150 50 90 3.80 0.3853 WVFGRD96 4.0 105 65 -20 3.85 0.2579 WVFGRD96 6.0 275 50 -30 3.89 0.3341 WVFGRD96 8.0 260 25 -20 3.92 0.4125 WVFGRD96 10.0 250 25 -40 3.98 0.5038 WVFGRD96 12.0 250 25 -40 4.02 0.5746 WVFGRD96 14.0 220 20 -65 4.06 0.6257 WVFGRD96 16.0 215 20 -70 4.09 0.6591 WVFGRD96 18.0 15 70 -90 4.13 0.6753 WVFGRD96 20.0 180 60 85 4.15 0.6965 WVFGRD96 22.0 180 60 85 4.18 0.7138 WVFGRD96 24.0 190 65 90 4.22 0.7076 WVFGRD96 26.0 185 65 85 4.23 0.6856 WVFGRD96 28.0 10 25 95 4.25 0.6468 WVFGRD96 30.0 180 65 85 4.25 0.5942 WVFGRD96 32.0 5 30 90 4.25 0.5534 WVFGRD96 34.0 5 30 90 4.25 0.5165 WVFGRD96 36.0 5 30 85 4.25 0.4780 WVFGRD96 38.0 175 80 -65 4.26 0.4859 WVFGRD96 40.0 160 80 -75 4.38 0.4915 WVFGRD96 42.0 160 75 -75 4.39 0.4916 WVFGRD96 44.0 160 75 -75 4.40 0.4993 WVFGRD96 46.0 160 75 -75 4.41 0.5053 WVFGRD96 48.0 160 75 -75 4.43 0.5086 WVFGRD96 50.0 175 80 -65 4.45 0.5092 WVFGRD96 52.0 170 80 -65 4.45 0.4962 WVFGRD96 54.0 165 80 -70 4.46 0.4954 WVFGRD96 56.0 165 80 -70 4.47 0.4943 WVFGRD96 58.0 165 80 -70 4.48 0.4932 WVFGRD96 60.0 165 80 -70 4.49 0.4738 WVFGRD96 62.0 165 80 -70 4.51 0.4749 WVFGRD96 64.0 175 85 -65 4.52 0.4753 WVFGRD96 66.0 175 85 -65 4.53 0.4573 WVFGRD96 68.0 0 90 60 4.53 0.4565 WVFGRD96 70.0 175 85 -65 4.56 0.4439 WVFGRD96 72.0 0 90 60 4.55 0.4430 WVFGRD96 74.0 0 90 60 4.56 0.4273 WVFGRD96 76.0 0 90 60 4.58 0.4294 WVFGRD96 78.0 210 90 50 4.58 0.4344 WVFGRD96 80.0 -5 75 -70 4.45 0.4402 WVFGRD96 82.0 355 75 -70 4.46 0.4446 WVFGRD96 84.0 360 75 -70 4.47 0.4480 WVFGRD96 86.0 360 75 -70 4.48 0.4505 WVFGRD96 88.0 370 75 -65 4.49 0.4524 WVFGRD96 90.0 370 75 -65 4.50 0.4540 WVFGRD96 92.0 0 70 -65 4.47 0.4551 WVFGRD96 94.0 5 70 -65 4.48 0.4562 WVFGRD96 96.0 5 70 -65 4.49 0.4572 WVFGRD96 98.0 5 70 -65 4.49 0.4578 WVFGRD96 100.0 5 70 -65 4.49 0.4578 WVFGRD96 102.0 10 70 -65 4.51 0.4574 WVFGRD96 104.0 15 70 -60 4.51 0.4572 WVFGRD96 106.0 15 70 -60 4.52 0.4570 WVFGRD96 108.0 10 70 -65 4.52 0.4564
The best solution is
WVFGRD96 22.0 180 60 85 4.18 0.7138
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: