2014/03/24 15:45:31 -19.605 -70.820 19.6 5.5 Chile
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/03/24 15:45:31:0 -19.60 -70.82 19.6 5.5 Chile Stations used: C.GO01 CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 2.57e+24 dyne-cm Mw = 5.54 Z = 24 km Plane Strike Dip Rake NP1 166 71 95 NP2 330 20 75 Principal Axes: Axis Value Plunge Azimuth T 2.57e+24 64 85 N 0.00e+00 5 344 P -2.57e+24 26 252 Moment Tensor: (dyne-cm) Component Value Mxx -2.02e+23 Mxy -5.77e+23 Mxz 4.10e+23 Myy -1.39e+24 Myz 1.96e+24 Mzz 1.60e+24 ##------------ -----##########------- --------##############------ ---------################----- -----------##################----- ------------###################----- -------------#####################---- --------------######################---- --------------######################---- ---------------########### #########---- ----------------########## T #########---- ----------------########## #########---- ----- ---------#####################---- ---- P ---------#####################--- ---- ----------####################--- -----------------###################-- ----------------##################-- ----------------################-- ---------------##############- ---------------############- --------------######## -----------### Global CMT Convention Moment Tensor: R T P 1.60e+24 4.10e+23 -1.96e+24 4.10e+23 -2.02e+23 5.77e+23 -1.96e+24 5.77e+23 -1.39e+24 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140324154531/index.html |
STK = 330 DIP = 20 RAKE = 75 MW = 5.54 HS = 24.0
The NDK file is 20140324154531.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/03/24 15:45:31:0 -19.60 -70.82 19.6 5.5 Chile Stations used: C.GO01 CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 2.57e+24 dyne-cm Mw = 5.54 Z = 24 km Plane Strike Dip Rake NP1 166 71 95 NP2 330 20 75 Principal Axes: Axis Value Plunge Azimuth T 2.57e+24 64 85 N 0.00e+00 5 344 P -2.57e+24 26 252 Moment Tensor: (dyne-cm) Component Value Mxx -2.02e+23 Mxy -5.77e+23 Mxz 4.10e+23 Myy -1.39e+24 Myz 1.96e+24 Mzz 1.60e+24 ##------------ -----##########------- --------##############------ ---------################----- -----------##################----- ------------###################----- -------------#####################---- --------------######################---- --------------######################---- ---------------########### #########---- ----------------########## T #########---- ----------------########## #########---- ----- ---------#####################---- ---- P ---------#####################--- ---- ----------####################--- -----------------###################-- ----------------##################-- ----------------################-- ---------------##############- ---------------############- --------------######## -----------### Global CMT Convention Moment Tensor: R T P 1.60e+24 4.10e+23 -1.96e+24 4.10e+23 -2.02e+23 5.77e+23 -1.96e+24 5.77e+23 -1.39e+24 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140324154531/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 -5 50 90 5.24 0.3930 WVFGRD96 4.0 265 10 0 5.31 0.2653 WVFGRD96 6.0 265 10 0 5.32 0.4147 WVFGRD96 8.0 265 10 0 5.40 0.5090 WVFGRD96 10.0 275 10 10 5.41 0.6089 WVFGRD96 12.0 285 10 25 5.43 0.6836 WVFGRD96 14.0 305 15 45 5.45 0.7423 WVFGRD96 16.0 315 15 55 5.47 0.7882 WVFGRD96 18.0 330 20 75 5.49 0.8257 WVFGRD96 20.0 330 20 75 5.51 0.8519 WVFGRD96 22.0 335 20 80 5.53 0.8661 WVFGRD96 24.0 330 20 75 5.54 0.8728 WVFGRD96 26.0 330 20 75 5.56 0.8712 WVFGRD96 28.0 330 20 75 5.57 0.8619 WVFGRD96 30.0 330 20 75 5.58 0.8454 WVFGRD96 32.0 325 20 70 5.59 0.8214 WVFGRD96 34.0 325 20 70 5.60 0.7929 WVFGRD96 36.0 325 20 70 5.61 0.7612 WVFGRD96 38.0 325 20 70 5.61 0.7310 WVFGRD96 40.0 325 15 65 5.74 0.7006 WVFGRD96 42.0 330 15 75 5.75 0.6699 WVFGRD96 44.0 325 15 65 5.76 0.6395 WVFGRD96 46.0 325 15 65 5.76 0.6111 WVFGRD96 48.0 320 15 60 5.77 0.5838 WVFGRD96 50.0 315 15 55 5.77 0.5578 WVFGRD96 52.0 310 15 50 5.78 0.5337 WVFGRD96 54.0 305 15 45 5.78 0.5111 WVFGRD96 56.0 310 10 50 5.79 0.4911 WVFGRD96 58.0 300 10 40 5.79 0.4734 WVFGRD96 60.0 295 10 35 5.80 0.4578 WVFGRD96 62.0 280 10 20 5.80 0.4437 WVFGRD96 64.0 275 10 15 5.80 0.4309 WVFGRD96 66.0 265 10 5 5.81 0.4199 WVFGRD96 68.0 255 10 -5 5.81 0.4097 WVFGRD96 70.0 260 5 5 5.82 0.4010 WVFGRD96 72.0 235 5 -20 5.83 0.3944 WVFGRD96 74.0 220 5 -35 5.83 0.3881 WVFGRD96 76.0 225 15 -35 5.82 0.3845 WVFGRD96 78.0 225 20 -40 5.82 0.3824 WVFGRD96 80.0 220 20 -45 5.83 0.3820 WVFGRD96 82.0 220 20 -45 5.83 0.3810 WVFGRD96 84.0 215 20 -50 5.83 0.3789 WVFGRD96 86.0 215 25 -55 5.83 0.3818 WVFGRD96 88.0 210 25 -55 5.84 0.3851 WVFGRD96 90.0 340 65 -80 5.84 0.3910 WVFGRD96 92.0 335 60 -85 5.84 0.3972 WVFGRD96 94.0 335 60 -85 5.85 0.4064 WVFGRD96 96.0 335 60 -85 5.86 0.4143 WVFGRD96 98.0 340 60 -85 5.86 0.4188 WVFGRD96 100.0 340 60 -85 5.87 0.4253 WVFGRD96 102.0 150 30 -100 5.87 0.4283 WVFGRD96 104.0 200 35 -65 5.87 0.4344 WVFGRD96 106.0 200 35 -65 5.87 0.4389 WVFGRD96 108.0 200 35 -65 5.88 0.4405
The best solution is
WVFGRD96 24.0 330 20 75 5.54 0.8728
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: