2014/03/24 15:33:54 -25.163 -70.706 42.7 5.0 Chile
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/03/24 15:33:54:0 -25.16 -70.71 42.7 5.0 Chile Stations used: C.GO02 C.GO03 C.GO04 CX.PB01 CX.PB04 CX.PB07 CX.PB09 CX.PB10 CX.PB14 CX.PB15 IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 2.51e+22 dyne-cm Mw = 4.20 Z = 34 km Plane Strike Dip Rake NP1 325 50 80 NP2 160 41 102 Principal Axes: Axis Value Plunge Azimuth T 2.51e+22 81 182 N 0.00e+00 8 331 P -2.51e+22 5 62 Moment Tensor: (dyne-cm) Component Value Mxx -4.87e+21 Mxy -1.03e+22 Mxz -4.76e+21 Myy -1.95e+22 Myz -1.91e+21 Mzz 2.44e+22 -------------- ##-------------------- ----######------------------ ----###########--------------- -----##############-------------- ------################------------ P ------###################---------- -------#####################------------ -------######################----------- --------#######################----------- --------########################---------- ---------########## ###########--------- ---------########## T ###########--------- ---------######### ############------- ----------#######################------- ---------#######################------ ----------#####################----- ----------####################---- ----------##################-- -----------###############-- -----------########### -------------# Global CMT Convention Moment Tensor: R T P 2.44e+22 -4.76e+21 1.91e+21 -4.76e+21 -4.87e+21 1.03e+22 1.91e+21 1.03e+22 -1.95e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140324153354/index.html |
STK = 325 DIP = 50 RAKE = 80 MW = 4.20 HS = 34.0
The NDK file is 20140324153354.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/03/24 15:33:54:0 -25.16 -70.71 42.7 5.0 Chile Stations used: C.GO02 C.GO03 C.GO04 CX.PB01 CX.PB04 CX.PB07 CX.PB09 CX.PB10 CX.PB14 CX.PB15 IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 2.51e+22 dyne-cm Mw = 4.20 Z = 34 km Plane Strike Dip Rake NP1 325 50 80 NP2 160 41 102 Principal Axes: Axis Value Plunge Azimuth T 2.51e+22 81 182 N 0.00e+00 8 331 P -2.51e+22 5 62 Moment Tensor: (dyne-cm) Component Value Mxx -4.87e+21 Mxy -1.03e+22 Mxz -4.76e+21 Myy -1.95e+22 Myz -1.91e+21 Mzz 2.44e+22 -------------- ##-------------------- ----######------------------ ----###########--------------- -----##############-------------- ------################------------ P ------###################---------- -------#####################------------ -------######################----------- --------#######################----------- --------########################---------- ---------########## ###########--------- ---------########## T ###########--------- ---------######### ############------- ----------#######################------- ---------#######################------ ----------#####################----- ----------####################---- ----------##################-- -----------###############-- -----------########### -------------# Global CMT Convention Moment Tensor: R T P 2.44e+22 -4.76e+21 1.91e+21 -4.76e+21 -4.87e+21 1.03e+22 1.91e+21 1.03e+22 -1.95e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140324153354/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 295 45 -90 3.79 0.3759 WVFGRD96 4.0 245 70 35 3.90 0.3788 WVFGRD96 6.0 240 80 25 3.94 0.3674 WVFGRD96 8.0 240 85 30 3.99 0.3641 WVFGRD96 10.0 240 90 40 4.00 0.3586 WVFGRD96 12.0 55 80 -45 4.02 0.3798 WVFGRD96 14.0 310 70 70 3.96 0.4154 WVFGRD96 16.0 315 65 75 4.00 0.4720 WVFGRD96 18.0 315 65 75 4.02 0.5246 WVFGRD96 20.0 315 65 75 4.04 0.5693 WVFGRD96 22.0 315 60 75 4.08 0.6060 WVFGRD96 24.0 320 60 80 4.10 0.6397 WVFGRD96 26.0 315 60 75 4.11 0.6659 WVFGRD96 28.0 320 55 80 4.14 0.6865 WVFGRD96 30.0 320 55 80 4.15 0.7003 WVFGRD96 32.0 320 55 75 4.17 0.7061 WVFGRD96 34.0 325 50 80 4.20 0.7086 WVFGRD96 36.0 325 50 80 4.22 0.7057 WVFGRD96 38.0 325 50 75 4.25 0.6984 WVFGRD96 40.0 330 50 75 4.38 0.6652 WVFGRD96 42.0 330 50 75 4.39 0.6671 WVFGRD96 44.0 335 45 80 4.42 0.6609 WVFGRD96 46.0 335 45 80 4.43 0.6488 WVFGRD96 48.0 335 45 80 4.44 0.6315 WVFGRD96 50.0 330 45 75 4.44 0.6110 WVFGRD96 52.0 330 45 75 4.44 0.5897 WVFGRD96 54.0 335 40 80 4.47 0.5713 WVFGRD96 56.0 335 40 80 4.47 0.5522 WVFGRD96 58.0 335 40 80 4.48 0.5321 WVFGRD96 60.0 330 40 75 4.47 0.5113 WVFGRD96 62.0 330 40 75 4.47 0.4901 WVFGRD96 64.0 340 35 85 4.50 0.4731 WVFGRD96 66.0 335 35 80 4.50 0.4556 WVFGRD96 68.0 335 35 80 4.50 0.4372 WVFGRD96 70.0 165 55 95 4.49 0.4182 WVFGRD96 72.0 65 45 0 4.50 0.4083 WVFGRD96 74.0 70 40 5 4.49 0.4024 WVFGRD96 76.0 70 40 5 4.50 0.3952 WVFGRD96 78.0 75 40 10 4.48 0.3895 WVFGRD96 80.0 75 40 10 4.49 0.3851 WVFGRD96 82.0 80 40 20 4.47 0.3806 WVFGRD96 84.0 80 40 20 4.47 0.3757 WVFGRD96 86.0 80 40 20 4.48 0.3713 WVFGRD96 88.0 85 40 25 4.47 0.3661 WVFGRD96 90.0 85 40 25 4.47 0.3607 WVFGRD96 92.0 90 40 35 4.45 0.3564 WVFGRD96 94.0 90 40 35 4.46 0.3520 WVFGRD96 96.0 95 40 40 4.45 0.3477 WVFGRD96 98.0 105 40 50 4.43 0.3436 WVFGRD96 100.0 110 40 55 4.43 0.3403 WVFGRD96 102.0 110 40 55 4.43 0.3369 WVFGRD96 104.0 115 40 60 4.43 0.3336 WVFGRD96 106.0 115 40 60 4.44 0.3305 WVFGRD96 108.0 120 40 65 4.44 0.3284
The best solution is
WVFGRD96 34.0 325 50 80 4.20 0.7086
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: