Location

2014/03/24 15:11:44 -19.603 -70.807 26.4 4.5 Chile

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2014/03/24 15:11:44:0 -19.60  -70.81  26.4 4.5 Chile
 
 Stations used:
   C.GO01 CX.PATCX CX.PB01 CX.PB09 CX.PB11 CX.PB12 CX.PB16 
   CX.PSGCX GT.LPAZ 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 1.35e+22 dyne-cm
  Mw = 4.02 
  Z  = 24 km
  Plane   Strike  Dip  Rake
   NP1      145    70    80
   NP2      352    22   116
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.35e+22     64      39
    N   0.00e+00      9     148
    P  -1.35e+22     24     243

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -7.41e+20
       Mxy    -3.26e+21
       Mxz     6.49e+21
       Myy    -7.80e+21
       Myz     7.88e+21
       Mzz     8.54e+21
                                                     
                                                     
                                                     
                                                     
                     ##########----                  
                 #################-----              
              --#####################-----           
             ---#######################----          
           ------#######################-----        
          -------#########################----       
         ---------########################-----      
        -----------###########   ##########-----     
        -----------########### T ###########----     
       -------------##########   ###########-----    
       --------------#######################-----    
       ---------------######################-----    
       -----------------####################-----    
        ----   ----------###################----     
        ---- P ------------#################----     
         ---   -------------###############----      
          --------------------############----       
           ---------------------#########----        
             ---------------------######---          
              -----------------------#----           
                 -------------------###              
                     ------------##                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  8.54e+21   6.49e+21  -7.88e+21 
  6.49e+21  -7.41e+20   3.26e+21 
 -7.88e+21   3.26e+21  -7.80e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140324151144/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 145
      DIP = 70
     RAKE = 80
       MW = 4.02
       HS = 24.0

The NDK file is 20140324151144.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2014/03/24 15:11:44:0 -19.60  -70.81  26.4 4.5 Chile
 
 Stations used:
   C.GO01 CX.PATCX CX.PB01 CX.PB09 CX.PB11 CX.PB12 CX.PB16 
   CX.PSGCX GT.LPAZ 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 1.35e+22 dyne-cm
  Mw = 4.02 
  Z  = 24 km
  Plane   Strike  Dip  Rake
   NP1      145    70    80
   NP2      352    22   116
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.35e+22     64      39
    N   0.00e+00      9     148
    P  -1.35e+22     24     243

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -7.41e+20
       Mxy    -3.26e+21
       Mxz     6.49e+21
       Myy    -7.80e+21
       Myz     7.88e+21
       Mzz     8.54e+21
                                                     
                                                     
                                                     
                                                     
                     ##########----                  
                 #################-----              
              --#####################-----           
             ---#######################----          
           ------#######################-----        
          -------#########################----       
         ---------########################-----      
        -----------###########   ##########-----     
        -----------########### T ###########----     
       -------------##########   ###########-----    
       --------------#######################-----    
       ---------------######################-----    
       -----------------####################-----    
        ----   ----------###################----     
        ---- P ------------#################----     
         ---   -------------###############----      
          --------------------############----       
           ---------------------#########----        
             ---------------------######---          
              -----------------------#----           
                 -------------------###              
                     ------------##                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  8.54e+21   6.49e+21  -7.88e+21 
  6.49e+21  -7.41e+20   3.26e+21 
 -7.88e+21   3.26e+21  -7.80e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140324151144/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   160    40    90   3.72 0.3903
WVFGRD96    4.0   325    85   -65   3.77 0.2843
WVFGRD96    6.0   325    85   -75   3.80 0.4226
WVFGRD96    8.0   325    85   -75   3.88 0.5120
WVFGRD96   10.0   325    85   -75   3.89 0.6041
WVFGRD96   12.0   150    75    85   3.91 0.6708
WVFGRD96   14.0   150    70    85   3.94 0.7353
WVFGRD96   16.0   145    70    80   3.96 0.7865
WVFGRD96   18.0   145    70    80   3.97 0.8222
WVFGRD96   20.0   350    25   110   3.99 0.8439
WVFGRD96   22.0   145    70    80   4.01 0.8545
WVFGRD96   24.0   145    70    80   4.02 0.8557
WVFGRD96   26.0   345    20   110   4.03 0.8480
WVFGRD96   28.0   145    70    85   4.04 0.8327
WVFGRD96   30.0   345    20   110   4.05 0.8103
WVFGRD96   32.0   150    70    90   4.05 0.7807
WVFGRD96   34.0   150    70    90   4.06 0.7472
WVFGRD96   36.0   150    70    90   4.07 0.7133
WVFGRD96   38.0   150    70    90   4.07 0.6812
WVFGRD96   40.0   155    75    90   4.20 0.6512
WVFGRD96   42.0   155    75    90   4.20 0.6208
WVFGRD96   44.0   330    15    85   4.21 0.5920
WVFGRD96   46.0   330    15    85   4.22 0.5658
WVFGRD96   48.0   325    20    80   4.23 0.5413
WVFGRD96   50.0   320    20    70   4.23 0.5198
WVFGRD96   52.0   315    20    65   4.24 0.4988
WVFGRD96   54.0   310    20    60   4.25 0.4792
WVFGRD96   56.0   300    15    50   4.24 0.4609
WVFGRD96   58.0   150    80    75   4.25 0.4463
WVFGRD96   60.0   145    85    75   4.26 0.4330
WVFGRD96   62.0   325    90   -80   4.25 0.4214
WVFGRD96   64.0   325    90   -80   4.26 0.4130
WVFGRD96   66.0   145    90    80   4.27 0.4045
WVFGRD96   68.0   145    90    80   4.27 0.3957
WVFGRD96   70.0   145    90    80   4.28 0.3868
WVFGRD96   72.0   320    85   -80   4.28 0.3820
WVFGRD96   74.0   315    80   -80   4.28 0.3808
WVFGRD96   76.0   320    80   -85   4.29 0.3808
WVFGRD96   78.0   160    15   -70   4.29 0.3811
WVFGRD96   80.0   320    75   -95   4.30 0.3819
WVFGRD96   82.0   165    15   -65   4.31 0.3828
WVFGRD96   84.0   155    15   -75   4.31 0.3821
WVFGRD96   86.0   325    60   -70   4.29 0.3847
WVFGRD96   88.0   320    55   -80   4.30 0.3907
WVFGRD96   90.0   320    55   -80   4.31 0.3979
WVFGRD96   92.0   320    55   -80   4.31 0.4049
WVFGRD96   94.0   320    55   -80   4.32 0.4112
WVFGRD96   96.0   320    55   -80   4.32 0.4165
WVFGRD96   98.0   325    55   -85   4.33 0.4216
WVFGRD96  100.0   135    35  -100   4.33 0.4260
WVFGRD96  102.0   325    55   -85   4.33 0.4297
WVFGRD96  104.0   135    35  -100   4.34 0.4331
WVFGRD96  106.0   135    35  -100   4.34 0.4361
WVFGRD96  108.0   140    35   -95   4.34 0.4383

The best solution is

WVFGRD96   24.0   145    70    80   4.02 0.8557

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Mon Mar 24 12:25:37 CDT 2014