Location

2014/03/24 13:12:43 -19.769 -70.798 19.7 4.1 Chile

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2014/03/24 13:12:43:0 -19.77  -70.80  19.7 4.1 Chile
 
 Stations used:
   C.GO01 CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB11 CX.PB12 
   CX.PB15 CX.PB16 CX.PSGCX IU.LVC 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 1.40e+22 dyne-cm
  Mw = 4.03 
  Z  = 20 km
  Plane   Strike  Dip  Rake
   NP1      345    85   -75
   NP2       93    16   -161
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.40e+22     38      62
    N   0.00e+00     15     164
    P  -1.40e+22     48     271

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.96e+21
       Mxy     3.70e+21
       Mxz     3.13e+21
       Myy     3.85e+20
       Myz     1.29e+22
       Mzz    -2.34e+21
                                                     
                                                     
                                                     
                                                     
                     --############                  
                 -------###############              
              ----------##################           
             ------------##################          
           ---------------###################        
          ----------------####################       
         ------------------###########   ######      
        -------------------########### T #######     
        --------------------##########   #######     
       ---------   ----------####################    
       --------- P ----------####################    
       #--------   -----------###################    
       #----------------------##################-    
        #----------------------#################     
        #----------------------################-     
         ##--------------------###############-      
          ##--------------------############--       
           ###------------------###########--        
             ###----------------########---          
              #####--------------####-----           
                 #########-----##------              
                     ############--                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -2.34e+21   3.13e+21  -1.29e+22 
  3.13e+21   1.96e+21  -3.70e+21 
 -1.29e+22  -3.70e+21   3.85e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140324131243/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 345
      DIP = 85
     RAKE = -75
       MW = 4.03
       HS = 20.0

The NDK file is 20140324131243.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2014/03/24 13:12:43:0 -19.77  -70.80  19.7 4.1 Chile
 
 Stations used:
   C.GO01 CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB11 CX.PB12 
   CX.PB15 CX.PB16 CX.PSGCX IU.LVC 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 1.40e+22 dyne-cm
  Mw = 4.03 
  Z  = 20 km
  Plane   Strike  Dip  Rake
   NP1      345    85   -75
   NP2       93    16   -161
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.40e+22     38      62
    N   0.00e+00     15     164
    P  -1.40e+22     48     271

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.96e+21
       Mxy     3.70e+21
       Mxz     3.13e+21
       Myy     3.85e+20
       Myz     1.29e+22
       Mzz    -2.34e+21
                                                     
                                                     
                                                     
                                                     
                     --############                  
                 -------###############              
              ----------##################           
             ------------##################          
           ---------------###################        
          ----------------####################       
         ------------------###########   ######      
        -------------------########### T #######     
        --------------------##########   #######     
       ---------   ----------####################    
       --------- P ----------####################    
       #--------   -----------###################    
       #----------------------##################-    
        #----------------------#################     
        #----------------------################-     
         ##--------------------###############-      
          ##--------------------############--       
           ###------------------###########--        
             ###----------------########---          
              #####--------------####-----           
                 #########-----##------              
                     ############--                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -2.34e+21   3.13e+21  -1.29e+22 
  3.13e+21   1.96e+21  -3.70e+21 
 -1.29e+22  -3.70e+21   3.85e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140324131243/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   350    45   -90   3.80 0.4207
WVFGRD96    4.0   350    60    80   3.85 0.2966
WVFGRD96    6.0   345    90   -75   3.86 0.4100
WVFGRD96    8.0   345    90   -80   3.94 0.4971
WVFGRD96   10.0   165    90    75   3.95 0.5879
WVFGRD96   12.0   345    85   -75   3.97 0.6553
WVFGRD96   14.0   345    85   -75   3.99 0.7022
WVFGRD96   16.0   345    85   -75   4.00 0.7333
WVFGRD96   18.0   345    85   -75   4.02 0.7515
WVFGRD96   20.0   345    85   -75   4.03 0.7595
WVFGRD96   22.0   345    85   -75   4.06 0.7588
WVFGRD96   24.0   345    85   -75   4.07 0.7504
WVFGRD96   26.0   165    90    75   4.08 0.7353
WVFGRD96   28.0   345    90   -75   4.09 0.7144
WVFGRD96   30.0   165    85    75   4.10 0.6887
WVFGRD96   32.0   165    80    70   4.10 0.6618
WVFGRD96   34.0   165    75    70   4.11 0.6342
WVFGRD96   36.0   165    75    70   4.12 0.6068
WVFGRD96   38.0   165    75    70   4.12 0.5813
WVFGRD96   40.0   165    85    80   4.26 0.5537
WVFGRD96   42.0   165    80    75   4.26 0.5176
WVFGRD96   44.0   165    80    75   4.26 0.4852
WVFGRD96   46.0   165    75    75   4.27 0.4571
WVFGRD96   48.0   165    75    70   4.27 0.4330
WVFGRD96   50.0   340    40    75   4.32 0.4129
WVFGRD96   52.0   340    40    75   4.33 0.3980
WVFGRD96   54.0   345    35    80   4.33 0.3855
WVFGRD96   56.0   345    35    80   4.34 0.3733
WVFGRD96   58.0   175    55    95   4.34 0.3602
WVFGRD96   60.0   340    35    75   4.35 0.3481
WVFGRD96   62.0   175    60    95   4.35 0.3389
WVFGRD96   64.0   175    60    95   4.36 0.3321
WVFGRD96   66.0   175    60    95   4.36 0.3277
WVFGRD96   68.0   345    30    80   4.37 0.3221
WVFGRD96   70.0   345    30    80   4.37 0.3169
WVFGRD96   72.0   340    30    75   4.38 0.3124
WVFGRD96   74.0   335    30    70   4.38 0.3088
WVFGRD96   76.0   335    30    70   4.38 0.3042
WVFGRD96   78.0   345    25    80   4.39 0.3004
WVFGRD96   80.0   150    60    65   4.37 0.2974
WVFGRD96   82.0   150    60    65   4.37 0.2967
WVFGRD96   84.0   325    60   -80   4.33 0.2955
WVFGRD96   86.0   325    60   -80   4.34 0.3028
WVFGRD96   88.0   325    60   -80   4.34 0.3134
WVFGRD96   90.0   325    60   -80   4.35 0.3227
WVFGRD96   92.0   315    55   -85   4.36 0.3287
WVFGRD96   94.0   315    55   -85   4.37 0.3371
WVFGRD96   96.0   315    55   -85   4.37 0.3432
WVFGRD96   98.0   320    55   -85   4.37 0.3479
WVFGRD96  100.0   320    55   -85   4.38 0.3527
WVFGRD96  102.0   320    55   -85   4.38 0.3574
WVFGRD96  104.0   320    55   -85   4.39 0.3604
WVFGRD96  106.0   135    35   -95   4.39 0.3682
WVFGRD96  108.0   320    55   -85   4.40 0.3717

The best solution is

WVFGRD96   20.0   345    85   -75   4.03 0.7595

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Mon Mar 24 12:05:08 CDT 2014