Location

2014/03/24 12:48:04 -19.923 -70.903 14.9 4.4 Chile

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2014/03/24 12:48:04:0 -19.92  -70.90  14.9 4.4 Chile
 
 Stations used:
   C.GO01 C.GO02 CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB09 
   CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ 
   IU.LVC 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 4.22e+22 dyne-cm
  Mw = 4.35 
  Z  = 20 km
  Plane   Strike  Dip  Rake
   NP1      165    65    85
   NP2      357    25   101
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.22e+22     70      65
    N   0.00e+00      5     167
    P  -4.22e+22     20     259

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -4.90e+20
       Mxy    -5.16e+21
       Mxz     8.49e+21
       Myy    -3.17e+22
       Myz     2.57e+22
       Mzz     3.22e+22
                                                     
                                                     
                                                     
                                                     
                     -#########----                  
                 -----############-----              
              -------################-----           
             --------##################----          
           ---------####################-----        
          ----------#####################-----       
         -----------######################-----      
        ------------#######################-----     
        -------------###########   ########-----     
       --------------########### T ########------    
       --------------###########   #########-----    
       ---   ---------######################-----    
       --- P ---------######################-----    
        --   ----------####################-----     
        ---------------####################-----     
         ---------------##################-----      
          ---------------################-----       
           ---------------##############-----        
             --------------############----          
              ---------------#########----           
                 -------------#####----              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  3.22e+22   8.49e+21  -2.57e+22 
  8.49e+21  -4.90e+20   5.16e+21 
 -2.57e+22   5.16e+21  -3.17e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140324124804/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 165
      DIP = 65
     RAKE = 85
       MW = 4.35
       HS = 20.0

The NDK file is 20140324124804.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2014/03/24 12:48:04:0 -19.92  -70.90  14.9 4.4 Chile
 
 Stations used:
   C.GO01 C.GO02 CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB09 
   CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ 
   IU.LVC 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 4.22e+22 dyne-cm
  Mw = 4.35 
  Z  = 20 km
  Plane   Strike  Dip  Rake
   NP1      165    65    85
   NP2      357    25   101
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.22e+22     70      65
    N   0.00e+00      5     167
    P  -4.22e+22     20     259

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -4.90e+20
       Mxy    -5.16e+21
       Mxz     8.49e+21
       Myy    -3.17e+22
       Myz     2.57e+22
       Mzz     3.22e+22
                                                     
                                                     
                                                     
                                                     
                     -#########----                  
                 -----############-----              
              -------################-----           
             --------##################----          
           ---------####################-----        
          ----------#####################-----       
         -----------######################-----      
        ------------#######################-----     
        -------------###########   ########-----     
       --------------########### T ########------    
       --------------###########   #########-----    
       ---   ---------######################-----    
       --- P ---------######################-----    
        --   ----------####################-----     
        ---------------####################-----     
         ---------------##################-----      
          ---------------################-----       
           ---------------##############-----        
             --------------############----          
              ---------------#########----           
                 -------------#####----              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  3.22e+22   8.49e+21  -2.57e+22 
  8.49e+21  -4.90e+20   5.16e+21 
 -2.57e+22   5.16e+21  -3.17e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140324124804/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   165    40   -90   4.10 0.4289
WVFGRD96    4.0   295    75    45   4.15 0.3057
WVFGRD96    6.0   230    10   -35   4.17 0.4276
WVFGRD96    8.0   240    10   -25   4.25 0.5126
WVFGRD96   10.0   255    10   -10   4.25 0.5956
WVFGRD96   12.0   170    75    85   4.28 0.6630
WVFGRD96   14.0   365    20   105   4.30 0.7244
WVFGRD96   16.0   360    25   100   4.32 0.7716
WVFGRD96   18.0   165    65    85   4.34 0.8000
WVFGRD96   20.0   165    65    85   4.35 0.8116
WVFGRD96   22.0   165    65    85   4.36 0.8113
WVFGRD96   24.0   165    65    85   4.37 0.8016
WVFGRD96   26.0   165    65    85   4.38 0.7849
WVFGRD96   28.0   165    65    85   4.39 0.7623
WVFGRD96   30.0   165    65    85   4.40 0.7345
WVFGRD96   32.0   160    65    80   4.41 0.7014
WVFGRD96   34.0   160    65    80   4.42 0.6640
WVFGRD96   36.0   160    65    80   4.42 0.6249
WVFGRD96   38.0   160    65    80   4.43 0.5856
WVFGRD96   40.0   350    20    95   4.55 0.5498
WVFGRD96   42.0   165    70    85   4.55 0.5130
WVFGRD96   44.0   160    65    85   4.57 0.4783
WVFGRD96   46.0   160    65    85   4.57 0.4462
WVFGRD96   48.0   160    65    80   4.57 0.4160
WVFGRD96   50.0   160    65    80   4.58 0.3890
WVFGRD96   52.0   160    65    80   4.58 0.3638
WVFGRD96   54.0   155    70    75   4.58 0.3414
WVFGRD96   56.0   155    70    75   4.58 0.3216
WVFGRD96   58.0    20    15   -55   4.58 0.3089
WVFGRD96   60.0    30    15   -45   4.58 0.3019
WVFGRD96   62.0    45    15   -30   4.58 0.2967
WVFGRD96   64.0   345    75    75   4.59 0.3021
WVFGRD96   66.0   345    70    75   4.60 0.3063
WVFGRD96   68.0   345    70    75   4.61 0.3118
WVFGRD96   70.0   345    70    75   4.61 0.3159
WVFGRD96   72.0   345    65    80   4.62 0.3216
WVFGRD96   74.0   345    65    80   4.63 0.3253
WVFGRD96   76.0   345    65    80   4.63 0.3256
WVFGRD96   78.0   350    60    85   4.64 0.3293
WVFGRD96   80.0   345    60    80   4.64 0.3337
WVFGRD96   82.0   345    60    80   4.64 0.3346
WVFGRD96   84.0   345    60    80   4.65 0.3358
WVFGRD96   86.0   345    60    80   4.65 0.3369
WVFGRD96   88.0   350    55    85   4.65 0.3366
WVFGRD96   90.0   350    55    85   4.65 0.3368
WVFGRD96   92.0   345    55    80   4.66 0.3375
WVFGRD96   94.0   345    55    80   4.66 0.3354
WVFGRD96   96.0   350    50    85   4.66 0.3340
WVFGRD96   98.0   350    50    85   4.66 0.3339
WVFGRD96  100.0   350    55    85   4.66 0.3385
WVFGRD96  102.0   135    30    70   4.67 0.3368
WVFGRD96  104.0   140    40    50   4.68 0.3400
WVFGRD96  106.0   175    45   -80   4.67 0.3472
WVFGRD96  108.0   175    45   -80   4.67 0.3505

The best solution is

WVFGRD96   20.0   165    65    85   4.35 0.8116

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Mon Mar 24 11:22:24 CDT 2014