Location

2014/03/24 12:32:50 -19.785 -70.819 20.8 4.9 Chile

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2014/03/24 12:32:50:0 -19.78  -70.82  20.8 4.9 Chile
 
 Stations used:
   C.GO01 CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB09 CX.PB10 
   CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ 
   IU.LVC 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 2.72e+23 dyne-cm
  Mw = 4.89 
  Z  = 22 km
  Plane   Strike  Dip  Rake
   NP1      165    70    80
   NP2       12    22   116
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.72e+23     64      59
    N   0.00e+00      9     168
    P  -2.72e+23     24     263

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.07e+22
       Mxy    -4.61e+21
       Mxz     6.88e+22
       Myy    -1.83e+23
       Myz     1.94e+23
       Mzz     1.72e+23
                                                     
                                                     
                                                     
                                                     
                     -############-                  
                 -----###############--              
              --------#################---           
             --------###################---          
           ----------#####################---        
          -----------######################---       
         ------------######################----      
        --------------######################----     
        --------------#########   ##########----     
       ---------------######### T ##########-----    
       ----------------########   ##########-----    
       ----   ---------#####################-----    
       ---- P ---------#####################-----    
        ---   ----------####################----     
        -----------------##################-----     
         ----------------#################-----      
          ----------------###############-----       
           ----------------#############-----        
             ---------------###########----          
              ---------------########-----           
                 --------------###-----              
                     ---------###--                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.72e+23   6.88e+22  -1.94e+23 
  6.88e+22   1.07e+22   4.61e+21 
 -1.94e+23   4.61e+21  -1.83e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140324123250/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 165
      DIP = 70
     RAKE = 80
       MW = 4.89
       HS = 22.0

The NDK file is 20140324123250.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2014/03/24 12:32:50:0 -19.78  -70.82  20.8 4.9 Chile
 
 Stations used:
   C.GO01 CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB09 CX.PB10 
   CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ 
   IU.LVC 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 2.72e+23 dyne-cm
  Mw = 4.89 
  Z  = 22 km
  Plane   Strike  Dip  Rake
   NP1      165    70    80
   NP2       12    22   116
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.72e+23     64      59
    N   0.00e+00      9     168
    P  -2.72e+23     24     263

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.07e+22
       Mxy    -4.61e+21
       Mxz     6.88e+22
       Myy    -1.83e+23
       Myz     1.94e+23
       Mzz     1.72e+23
                                                     
                                                     
                                                     
                                                     
                     -############-                  
                 -----###############--              
              --------#################---           
             --------###################---          
           ----------#####################---        
          -----------######################---       
         ------------######################----      
        --------------######################----     
        --------------#########   ##########----     
       ---------------######### T ##########-----    
       ----------------########   ##########-----    
       ----   ---------#####################-----    
       ---- P ---------#####################-----    
        ---   ----------####################----     
        -----------------##################-----     
         ----------------#################-----      
          ----------------###############-----       
           ----------------#############-----        
             ---------------###########----          
              ---------------########-----           
                 --------------###-----              
                     ---------###--                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.72e+23   6.88e+22  -1.94e+23 
  6.88e+22   1.07e+22   4.61e+21 
 -1.94e+23   4.61e+21  -1.83e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140324123250/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   175    40    95   4.61 0.4025
WVFGRD96    4.0   240    10   -20   4.68 0.2828
WVFGRD96    6.0   260     5     0   4.69 0.4364
WVFGRD96    8.0   275     5    15   4.77 0.5327
WVFGRD96   10.0   295    10    35   4.78 0.6300
WVFGRD96   12.0   165    80    80   4.80 0.7132
WVFGRD96   14.0   165    75    80   4.82 0.7778
WVFGRD96   16.0   165    70    80   4.85 0.8236
WVFGRD96   18.0   165    70    80   4.86 0.8520
WVFGRD96   20.0   165    70    80   4.87 0.8656
WVFGRD96   22.0   165    70    80   4.89 0.8685
WVFGRD96   24.0   165    70    80   4.90 0.8627
WVFGRD96   26.0   165    75    80   4.91 0.8500
WVFGRD96   28.0   165    75    80   4.92 0.8322
WVFGRD96   30.0   165    75    80   4.93 0.8083
WVFGRD96   32.0   165    70    80   4.94 0.7798
WVFGRD96   34.0   165    75    80   4.95 0.7478
WVFGRD96   36.0   160    75    80   4.95 0.7151
WVFGRD96   38.0   165    75    80   4.96 0.6830
WVFGRD96   40.0   165    75    85   5.10 0.6532
WVFGRD96   42.0   165    75    85   5.10 0.6174
WVFGRD96   44.0   160    75    80   5.11 0.5829
WVFGRD96   46.0   160    75    80   5.11 0.5515
WVFGRD96   48.0   160    75    80   5.12 0.5220
WVFGRD96   50.0   160    75    75   5.12 0.4944
WVFGRD96   52.0   160    75    75   5.13 0.4696
WVFGRD96   54.0   160    75    75   5.13 0.4460
WVFGRD96   56.0   160    75    75   5.14 0.4240
WVFGRD96   58.0   160    80    75   5.14 0.4057
WVFGRD96   60.0   155    80    70   5.15 0.3890
WVFGRD96   62.0   155    80    70   5.15 0.3749
WVFGRD96   64.0   160    80    75   5.16 0.3618
WVFGRD96   66.0   345    70    80   5.14 0.3508
WVFGRD96   68.0   345    65    80   5.14 0.3432
WVFGRD96   70.0   345    65    80   5.15 0.3459
WVFGRD96   72.0   345    65    80   5.15 0.3382
WVFGRD96   74.0   350    60    80   5.15 0.3399
WVFGRD96   76.0   345    60    80   5.15 0.3346
WVFGRD96   78.0   345    60    80   5.16 0.3288
WVFGRD96   80.0   345    55    80   5.16 0.3315
WVFGRD96   82.0   350    55    80   5.16 0.3260
WVFGRD96   84.0   310    65   -70   5.17 0.3276
WVFGRD96   86.0   325    65   -85   5.17 0.3287
WVFGRD96   88.0   130    30   -95   5.18 0.3352
WVFGRD96   90.0   130    30   -95   5.19 0.3419
WVFGRD96   92.0   135    30   -90   5.19 0.3472
WVFGRD96   94.0   315    60   -90   5.20 0.3538
WVFGRD96   96.0   140    30   -90   5.20 0.3627
WVFGRD96   98.0   320    60   -90   5.21 0.3678
WVFGRD96  100.0   320    60   -90   5.21 0.3755
WVFGRD96  102.0   320    60   -90   5.22 0.3799
WVFGRD96  104.0   320    60   -90   5.22 0.3864
WVFGRD96  106.0   155    30   -75   5.24 0.3934
WVFGRD96  108.0   155    30   -75   5.24 0.3962

The best solution is

WVFGRD96   22.0   165    70    80   4.89 0.8685

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Mon Mar 24 11:35:36 CDT 2014