2014/03/24 11:40:44 -19.807 -70.832 22.6 5.5 Chile
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/03/24 11:40:44:0 -19.81 -70.83 22.6 5.5 Chile Stations used: C.GO01 CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 2.32e+24 dyne-cm Mw = 5.51 Z = 20 km Plane Strike Dip Rake NP1 165 70 80 NP2 12 22 116 Principal Axes: Axis Value Plunge Azimuth T 2.32e+24 64 59 N 0.00e+00 9 168 P -2.32e+24 24 263 Moment Tensor: (dyne-cm) Component Value Mxx 9.08e+22 Mxy -3.93e+22 Mxz 5.85e+23 Myy -1.56e+24 Myz 1.65e+24 Mzz 1.47e+24 -############- -----###############-- --------#################--- --------###################--- ----------#####################--- -----------######################--- ------------######################---- --------------######################---- --------------######### ##########---- ---------------######### T ##########----- ----------------######## ##########----- ---- ---------#####################----- ---- P ---------#####################----- --- ----------####################---- -----------------##################----- ----------------#################----- ----------------###############----- ----------------#############----- ---------------###########---- ---------------########----- --------------###----- ---------###-- Global CMT Convention Moment Tensor: R T P 1.47e+24 5.85e+23 -1.65e+24 5.85e+23 9.08e+22 3.93e+22 -1.65e+24 3.93e+22 -1.56e+24 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140324114044/index.html |
STK = 165 DIP = 70 RAKE = 80 MW = 5.51 HS = 20.0
The NDK file is 20140324114044.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/03/24 11:40:44:0 -19.81 -70.83 22.6 5.5 Chile Stations used: C.GO01 CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 2.32e+24 dyne-cm Mw = 5.51 Z = 20 km Plane Strike Dip Rake NP1 165 70 80 NP2 12 22 116 Principal Axes: Axis Value Plunge Azimuth T 2.32e+24 64 59 N 0.00e+00 9 168 P -2.32e+24 24 263 Moment Tensor: (dyne-cm) Component Value Mxx 9.08e+22 Mxy -3.93e+22 Mxz 5.85e+23 Myy -1.56e+24 Myz 1.65e+24 Mzz 1.47e+24 -############- -----###############-- --------#################--- --------###################--- ----------#####################--- -----------######################--- ------------######################---- --------------######################---- --------------######### ##########---- ---------------######### T ##########----- ----------------######## ##########----- ---- ---------#####################----- ---- P ---------#####################----- --- ----------####################---- -----------------##################----- ----------------#################----- ----------------###############----- ----------------#############----- ---------------###########---- ---------------########----- --------------###----- ---------###-- Global CMT Convention Moment Tensor: R T P 1.47e+24 5.85e+23 -1.65e+24 5.85e+23 9.08e+22 3.93e+22 -1.65e+24 3.93e+22 -1.56e+24 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140324114044/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 355 45 -85 5.26 0.4460 WVFGRD96 4.0 220 10 -40 5.32 0.2957 WVFGRD96 6.0 255 5 -5 5.33 0.4433 WVFGRD96 8.0 280 5 20 5.41 0.5364 WVFGRD96 10.0 305 10 45 5.42 0.6325 WVFGRD96 12.0 370 15 110 5.44 0.7101 WVFGRD96 14.0 170 75 85 5.46 0.7711 WVFGRD96 16.0 170 75 85 5.47 0.8105 WVFGRD96 18.0 165 70 80 5.49 0.8345 WVFGRD96 20.0 165 70 80 5.51 0.8440 WVFGRD96 22.0 170 75 85 5.52 0.8437 WVFGRD96 24.0 170 75 85 5.53 0.8352 WVFGRD96 26.0 165 75 85 5.54 0.8201 WVFGRD96 28.0 165 70 80 5.56 0.7998 WVFGRD96 30.0 165 70 80 5.57 0.7744 WVFGRD96 32.0 165 70 85 5.57 0.7442 WVFGRD96 34.0 165 75 85 5.58 0.7111 WVFGRD96 36.0 165 75 85 5.58 0.6768 WVFGRD96 38.0 165 75 85 5.59 0.6449 WVFGRD96 40.0 170 80 90 5.73 0.6155 WVFGRD96 42.0 165 75 85 5.73 0.5742 WVFGRD96 44.0 165 75 85 5.73 0.5367 WVFGRD96 46.0 165 75 85 5.74 0.5021 WVFGRD96 48.0 160 75 80 5.74 0.4701 WVFGRD96 50.0 160 75 80 5.74 0.4411 WVFGRD96 52.0 160 75 80 5.75 0.4151 WVFGRD96 54.0 155 75 75 5.76 0.3917 WVFGRD96 56.0 155 75 75 5.76 0.3711 WVFGRD96 58.0 160 75 80 5.76 0.3524 WVFGRD96 60.0 155 75 70 5.77 0.3363 WVFGRD96 62.0 145 80 65 5.78 0.3234 WVFGRD96 64.0 150 80 65 5.78 0.3121 WVFGRD96 66.0 150 80 65 5.78 0.3025 WVFGRD96 68.0 150 65 60 5.81 0.2965 WVFGRD96 70.0 155 65 65 5.81 0.2929 WVFGRD96 72.0 155 65 65 5.82 0.2892 WVFGRD96 74.0 155 65 70 5.82 0.2853 WVFGRD96 76.0 160 65 75 5.83 0.2815 WVFGRD96 78.0 355 60 85 5.77 0.2834 WVFGRD96 80.0 355 60 85 5.77 0.2763 WVFGRD96 82.0 160 70 75 5.84 0.2729 WVFGRD96 84.0 355 55 85 5.78 0.2818 WVFGRD96 86.0 -5 55 85 5.78 0.2807 WVFGRD96 88.0 310 60 -85 5.80 0.2795 WVFGRD96 90.0 -5 50 90 5.79 0.2886 WVFGRD96 92.0 310 60 -85 5.81 0.2929 WVFGRD96 94.0 310 60 -90 5.82 0.2987 WVFGRD96 96.0 125 30 -95 5.82 0.3039 WVFGRD96 98.0 315 60 -90 5.82 0.3096 WVFGRD96 100.0 135 30 -90 5.83 0.3128 WVFGRD96 102.0 315 60 -90 5.83 0.3176 WVFGRD96 104.0 140 30 -85 5.84 0.3209 WVFGRD96 106.0 140 30 -85 5.84 0.3243 WVFGRD96 108.0 140 30 -85 5.85 0.3268
The best solution is
WVFGRD96 20.0 165 70 80 5.51 0.8440
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: