2014/03/24 11:32:14 -19.833 -70.814 19.8 5.2 Chile
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/03/24 11:32:14:0 -19.83 -70.81 19.8 5.2 Chile Stations used: C.GO01 CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 5.43e+23 dyne-cm Mw = 5.09 Z = 22 km Plane Strike Dip Rake NP1 169 71 85 NP2 5 20 105 Principal Axes: Axis Value Plunge Azimuth T 5.43e+23 64 70 N 0.00e+00 5 171 P -5.43e+23 26 263 Moment Tensor: (dyne-cm) Component Value Mxx 5.79e+21 Mxy -1.81e+22 Mxz 9.66e+22 Myy -3.43e+23 Myz 4.12e+23 Mzz 3.37e+23 ---#########-- ------#############--- ---------###############---- ---------##################--- -----------###################---- ------------#####################--- -------------#####################---- --------------######################---- --------------########### ########---- ----------------########## T #########---- ----------------########## #########---- ---- ---------######################---- ---- P ----------#####################---- --- ----------####################---- -----------------###################---- ----------------##################---- ----------------################---- ----------------##############---- --------------############---- --------------##########---- -------------#####---- ----------#--- Global CMT Convention Moment Tensor: R T P 3.37e+23 9.66e+22 -4.12e+23 9.66e+22 5.79e+21 1.81e+22 -4.12e+23 1.81e+22 -3.43e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140324113214/index.html |
STK = 365 DIP = 20 RAKE = 105 MW = 5.09 HS = 22.0
The NDK file is 20140324113214.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/03/24 11:32:14:0 -19.83 -70.81 19.8 5.2 Chile Stations used: C.GO01 CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 5.43e+23 dyne-cm Mw = 5.09 Z = 22 km Plane Strike Dip Rake NP1 169 71 85 NP2 5 20 105 Principal Axes: Axis Value Plunge Azimuth T 5.43e+23 64 70 N 0.00e+00 5 171 P -5.43e+23 26 263 Moment Tensor: (dyne-cm) Component Value Mxx 5.79e+21 Mxy -1.81e+22 Mxz 9.66e+22 Myy -3.43e+23 Myz 4.12e+23 Mzz 3.37e+23 ---#########-- ------#############--- ---------###############---- ---------##################--- -----------###################---- ------------#####################--- -------------#####################---- --------------######################---- --------------########### ########---- ----------------########## T #########---- ----------------########## #########---- ---- ---------######################---- ---- P ----------#####################---- --- ----------####################---- -----------------###################---- ----------------##################---- ----------------################---- ----------------##############---- --------------############---- --------------##########---- -------------#####---- ----------#--- Global CMT Convention Moment Tensor: R T P 3.37e+23 9.66e+22 -4.12e+23 9.66e+22 5.79e+21 1.81e+22 -4.12e+23 1.81e+22 -3.43e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140324113214/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 350 50 90 4.81 0.3668 WVFGRD96 4.0 240 5 -20 4.89 0.2664 WVFGRD96 6.0 270 5 10 4.89 0.4115 WVFGRD96 8.0 285 5 25 4.98 0.5029 WVFGRD96 10.0 305 10 45 4.99 0.5972 WVFGRD96 12.0 315 15 55 5.01 0.6707 WVFGRD96 14.0 170 75 90 5.03 0.7315 WVFGRD96 16.0 170 70 90 5.05 0.7757 WVFGRD96 18.0 350 20 90 5.06 0.8023 WVFGRD96 20.0 170 70 90 5.07 0.8154 WVFGRD96 22.0 365 20 105 5.09 0.8177 WVFGRD96 24.0 345 20 85 5.10 0.8116 WVFGRD96 26.0 320 20 65 5.11 0.7993 WVFGRD96 28.0 320 20 65 5.13 0.7820 WVFGRD96 30.0 320 20 65 5.14 0.7593 WVFGRD96 32.0 320 20 65 5.14 0.7320 WVFGRD96 34.0 355 20 100 5.15 0.7014 WVFGRD96 36.0 315 20 60 5.16 0.6701 WVFGRD96 38.0 315 20 60 5.16 0.6401 WVFGRD96 40.0 320 15 65 5.30 0.6145 WVFGRD96 42.0 320 15 65 5.30 0.5800 WVFGRD96 44.0 320 15 65 5.31 0.5473 WVFGRD96 46.0 315 15 60 5.31 0.5167 WVFGRD96 48.0 310 15 55 5.31 0.4882 WVFGRD96 50.0 165 75 90 5.32 0.4637 WVFGRD96 52.0 345 15 90 5.33 0.4409 WVFGRD96 54.0 165 75 90 5.34 0.4204 WVFGRD96 56.0 165 75 90 5.34 0.4019 WVFGRD96 58.0 165 75 90 5.35 0.3848 WVFGRD96 60.0 350 10 95 5.35 0.3697 WVFGRD96 62.0 350 10 95 5.35 0.3567 WVFGRD96 64.0 345 10 90 5.36 0.3444 WVFGRD96 66.0 335 5 80 5.36 0.3338 WVFGRD96 68.0 300 5 40 5.36 0.3243 WVFGRD96 70.0 165 85 90 5.37 0.3162 WVFGRD96 72.0 165 90 90 5.37 0.3099 WVFGRD96 74.0 230 5 -25 5.37 0.3042 WVFGRD96 76.0 310 70 -70 5.36 0.2997 WVFGRD96 78.0 325 70 -80 5.36 0.3027 WVFGRD96 80.0 330 70 -80 5.36 0.3076 WVFGRD96 82.0 330 70 -80 5.37 0.3115 WVFGRD96 84.0 320 60 -90 5.38 0.3170 WVFGRD96 86.0 320 60 -90 5.38 0.3251 WVFGRD96 88.0 140 30 -90 5.39 0.3320 WVFGRD96 90.0 140 30 -90 5.39 0.3392 WVFGRD96 92.0 140 30 -90 5.40 0.3455 WVFGRD96 94.0 320 60 -90 5.40 0.3507 WVFGRD96 96.0 140 30 -90 5.41 0.3563 WVFGRD96 98.0 320 60 -90 5.41 0.3605 WVFGRD96 100.0 320 60 -90 5.42 0.3648 WVFGRD96 102.0 140 30 -90 5.42 0.3680 WVFGRD96 104.0 145 30 -85 5.43 0.3732 WVFGRD96 106.0 155 30 -75 5.44 0.3793 WVFGRD96 108.0 145 35 -80 5.44 0.3824
The best solution is
WVFGRD96 22.0 365 20 105 5.09 0.8177
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: