2014/03/24 11:26:38 -19.843 -70.852 17.6 5.5 Chile
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/03/24 11:26:38:0 -19.84 -70.85 17.6 5.5 Chile Stations used: C.GO01 CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 3.76e+24 dyne-cm Mw = 5.65 Z = 22 km Plane Strike Dip Rake NP1 160 70 80 NP2 7 22 116 Principal Axes: Axis Value Plunge Azimuth T 3.76e+24 64 54 N 0.00e+00 9 163 P -3.76e+24 24 258 Moment Tensor: (dyne-cm) Component Value Mxx 1.16e+23 Mxy -2.95e+23 Mxz 1.18e+24 Myy -2.50e+24 Myz 2.59e+24 Mzz 2.38e+24 ############-- ---################--- ------##################---- -------####################--- ---------#####################---- ----------######################---- ------------######################---- -------------############ ########---- -------------############ T ########---- ---------------########### ########----- ---------------######################----- ---- ---------#####################----- ---- P ----------####################----- --- ----------####################---- -----------------##################----- -----------------################----- -----------------###############---- -----------------############----- -----------------#########---- -----------------######----- ----------------#----- ----------#### Global CMT Convention Moment Tensor: R T P 2.38e+24 1.18e+24 -2.59e+24 1.18e+24 1.16e+23 2.95e+23 -2.59e+24 2.95e+23 -2.50e+24 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140324112638/index.html |
STK = 160 DIP = 70 RAKE = 80 MW = 5.65 HS = 22.0
The NDK file is 20140324112638.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/03/24 11:26:38:0 -19.84 -70.85 17.6 5.5 Chile Stations used: C.GO01 CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 3.76e+24 dyne-cm Mw = 5.65 Z = 22 km Plane Strike Dip Rake NP1 160 70 80 NP2 7 22 116 Principal Axes: Axis Value Plunge Azimuth T 3.76e+24 64 54 N 0.00e+00 9 163 P -3.76e+24 24 258 Moment Tensor: (dyne-cm) Component Value Mxx 1.16e+23 Mxy -2.95e+23 Mxz 1.18e+24 Myy -2.50e+24 Myz 2.59e+24 Mzz 2.38e+24 ############-- ---################--- ------##################---- -------####################--- ---------#####################---- ----------######################---- ------------######################---- -------------############ ########---- -------------############ T ########---- ---------------########### ########----- ---------------######################----- ---- ---------#####################----- ---- P ----------####################----- --- ----------####################---- -----------------##################----- -----------------################----- -----------------###############---- -----------------############----- -----------------#########---- -----------------######----- ----------------#----- ----------#### Global CMT Convention Moment Tensor: R T P 2.38e+24 1.18e+24 -2.59e+24 1.18e+24 1.16e+23 2.95e+23 -2.59e+24 2.95e+23 -2.50e+24 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140324112638/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 350 45 -90 5.36 0.4202 WVFGRD96 4.0 165 30 85 5.42 0.2900 WVFGRD96 6.0 250 5 -10 5.44 0.4305 WVFGRD96 8.0 255 5 -5 5.52 0.5278 WVFGRD96 10.0 290 5 35 5.53 0.6308 WVFGRD96 12.0 310 10 55 5.55 0.7106 WVFGRD96 14.0 165 75 85 5.58 0.7768 WVFGRD96 16.0 165 75 85 5.59 0.8266 WVFGRD96 18.0 165 70 85 5.61 0.8617 WVFGRD96 20.0 160 70 80 5.63 0.8821 WVFGRD96 22.0 160 70 80 5.65 0.8915 WVFGRD96 24.0 160 70 80 5.66 0.8909 WVFGRD96 26.0 160 70 80 5.67 0.8828 WVFGRD96 28.0 160 70 80 5.68 0.8682 WVFGRD96 30.0 160 70 80 5.69 0.8472 WVFGRD96 32.0 160 70 85 5.70 0.8200 WVFGRD96 34.0 160 70 85 5.71 0.7880 WVFGRD96 36.0 160 70 85 5.72 0.7538 WVFGRD96 38.0 160 70 85 5.72 0.7202 WVFGRD96 40.0 350 15 95 5.86 0.6903 WVFGRD96 42.0 160 75 85 5.86 0.6531 WVFGRD96 44.0 160 75 85 5.87 0.6170 WVFGRD96 46.0 160 75 85 5.87 0.5830 WVFGRD96 48.0 160 70 85 5.88 0.5517 WVFGRD96 50.0 160 70 80 5.89 0.5221 WVFGRD96 52.0 160 75 80 5.89 0.4954 WVFGRD96 54.0 160 75 80 5.89 0.4709 WVFGRD96 56.0 160 75 80 5.90 0.4487 WVFGRD96 58.0 160 75 80 5.91 0.4282 WVFGRD96 60.0 160 75 80 5.91 0.4093 WVFGRD96 62.0 160 75 80 5.92 0.3923 WVFGRD96 64.0 155 80 75 5.92 0.3786 WVFGRD96 66.0 155 80 75 5.92 0.3663 WVFGRD96 68.0 160 80 80 5.93 0.3547 WVFGRD96 70.0 160 85 80 5.92 0.3457 WVFGRD96 72.0 160 85 85 5.93 0.3372 WVFGRD96 74.0 340 90 -80 5.93 0.3310 WVFGRD96 76.0 160 90 85 5.93 0.3253 WVFGRD96 78.0 160 90 85 5.94 0.3198 WVFGRD96 80.0 340 85 -85 5.94 0.3195 WVFGRD96 82.0 335 80 -80 5.93 0.3184 WVFGRD96 84.0 335 80 -80 5.94 0.3199 WVFGRD96 86.0 325 70 -80 5.93 0.3243 WVFGRD96 88.0 325 65 -85 5.93 0.3302 WVFGRD96 90.0 135 25 -95 5.94 0.3401 WVFGRD96 92.0 135 25 -95 5.95 0.3485 WVFGRD96 94.0 140 25 -95 5.95 0.3539 WVFGRD96 96.0 320 65 -90 5.96 0.3598 WVFGRD96 98.0 320 65 -95 5.97 0.3651 WVFGRD96 100.0 150 25 -80 5.97 0.3694 WVFGRD96 102.0 320 65 -95 5.98 0.3737 WVFGRD96 104.0 140 30 -90 5.97 0.3769 WVFGRD96 106.0 140 30 -90 5.97 0.3805 WVFGRD96 108.0 155 30 -75 5.99 0.3853
The best solution is
WVFGRD96 22.0 160 70 80 5.65 0.8915
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: