Location

2014/03/23 23:55:48 -19.962 -70.796 21.0 4.4 Chile

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2014/03/23 23:55:48:0 -19.96  -70.80  21.0 4.4 Chile
 
 Stations used:
   C.GO01 C.GO02 CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB09 
   CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX 
   GT.LPAZ IU.LVC 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 4.52e+22 dyne-cm
  Mw = 4.37 
  Z  = 20 km
  Plane   Strike  Dip  Rake
   NP1      165    75    80
   NP2       19    18   123
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.52e+22     59      61
    N   0.00e+00     10     168
    P  -4.52e+22     29     263

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     2.30e+21
       Mxy     1.00e+21
       Mxz     1.19e+22
       Myy    -2.45e+22
       Myz     3.67e+22
       Mzz     2.22e+22
                                                     
                                                     
                                                     
                                                     
                     -#############                  
                 -----################-              
              --------##################--           
             ---------###################--          
           -----------#####################--        
          ------------######################--       
         -------------######################---      
        ---------------###########   ########---     
        ---------------########### T ########---     
       ----------------###########   ########----    
       -----------------######################---    
       -----   ---------#####################----    
       ----- P ----------####################----    
        ----   ----------####################---     
        ------------------##################----     
         ------------------################----      
          -----------------###############----       
           -----------------#############----        
             ----------------##########----          
              ----------------#######-----           
                 --------------###-----              
                     --------####--                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  2.22e+22   1.19e+22  -3.67e+22 
  1.19e+22   2.30e+21  -1.00e+21 
 -3.67e+22  -1.00e+21  -2.45e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140323235548/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 165
      DIP = 75
     RAKE = 80
       MW = 4.37
       HS = 20.0

The NDK file is 20140323235548.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2014/03/23 23:55:48:0 -19.96  -70.80  21.0 4.4 Chile
 
 Stations used:
   C.GO01 C.GO02 CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB09 
   CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX 
   GT.LPAZ IU.LVC 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 4.52e+22 dyne-cm
  Mw = 4.37 
  Z  = 20 km
  Plane   Strike  Dip  Rake
   NP1      165    75    80
   NP2       19    18   123
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.52e+22     59      61
    N   0.00e+00     10     168
    P  -4.52e+22     29     263

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     2.30e+21
       Mxy     1.00e+21
       Mxz     1.19e+22
       Myy    -2.45e+22
       Myz     3.67e+22
       Mzz     2.22e+22
                                                     
                                                     
                                                     
                                                     
                     -#############                  
                 -----################-              
              --------##################--           
             ---------###################--          
           -----------#####################--        
          ------------######################--       
         -------------######################---      
        ---------------###########   ########---     
        ---------------########### T ########---     
       ----------------###########   ########----    
       -----------------######################---    
       -----   ---------#####################----    
       ----- P ----------####################----    
        ----   ----------####################---     
        ------------------##################----     
         ------------------################----      
          -----------------###############----       
           -----------------#############----        
             ----------------##########----          
              ----------------#######-----           
                 --------------###-----              
                     --------####--                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  2.22e+22   1.19e+22  -3.67e+22 
  1.19e+22   2.30e+21  -1.00e+21 
 -3.67e+22  -1.00e+21  -2.45e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140323235548/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   165    45   -85   4.12 0.4396
WVFGRD96    4.0   305    70    45   4.14 0.3028
WVFGRD96    6.0   250    10   -10   4.19 0.4369
WVFGRD96    8.0   260    10     0   4.27 0.5283
WVFGRD96   10.0   165    85    80   4.28 0.6250
WVFGRD96   12.0   165    80    80   4.30 0.7013
WVFGRD96   14.0   165    75    80   4.32 0.7579
WVFGRD96   16.0   165    75    80   4.34 0.7958
WVFGRD96   18.0   165    75    80   4.35 0.8182
WVFGRD96   20.0   165    75    80   4.37 0.8275
WVFGRD96   22.0   160    75    80   4.39 0.8272
WVFGRD96   24.0   160    75    80   4.40 0.8185
WVFGRD96   26.0   160    75    80   4.41 0.8030
WVFGRD96   28.0   160    75    80   4.42 0.7818
WVFGRD96   30.0   160    75    80   4.43 0.7549
WVFGRD96   32.0   160    75    80   4.44 0.7236
WVFGRD96   34.0   160    75    85   4.44 0.6900
WVFGRD96   36.0   295    20    50   4.45 0.6547
WVFGRD96   38.0   295    20    50   4.45 0.6227
WVFGRD96   40.0   165    80    95   4.59 0.5943
WVFGRD96   42.0   350    15   100   4.59 0.5553
WVFGRD96   44.0   155    75    80   4.59 0.5195
WVFGRD96   46.0   155    70    80   4.60 0.4897
WVFGRD96   48.0   155    70    80   4.61 0.4625
WVFGRD96   50.0   155    70    80   4.61 0.4370
WVFGRD96   52.0   155    70    80   4.62 0.4145
WVFGRD96   54.0   155    70    80   4.62 0.3937
WVFGRD96   56.0   155    70    80   4.63 0.3746
WVFGRD96   58.0   340    75    75   4.62 0.3657
WVFGRD96   60.0   340    75    75   4.62 0.3626
WVFGRD96   62.0   340    70    75   4.63 0.3613
WVFGRD96   64.0   340    70    75   4.64 0.3607
WVFGRD96   66.0   340    70    75   4.64 0.3580
WVFGRD96   68.0   340    65    75   4.65 0.3570
WVFGRD96   70.0   340    65    75   4.65 0.3553
WVFGRD96   72.0   340    65    75   4.66 0.3527
WVFGRD96   74.0   340    60    75   4.66 0.3498
WVFGRD96   76.0   340    60    75   4.66 0.3484
WVFGRD96   78.0   340    60    75   4.67 0.3457
WVFGRD96   80.0   345    55    80   4.67 0.3443
WVFGRD96   82.0   340    55    75   4.67 0.3410
WVFGRD96   84.0   340    55    75   4.67 0.3407
WVFGRD96   86.0   335    55    75   4.68 0.3390
WVFGRD96   88.0   340    50    80   4.68 0.3359
WVFGRD96   90.0   340    50    80   4.68 0.3346
WVFGRD96   92.0   340    50    80   4.68 0.3315
WVFGRD96   94.0   340    50    80   4.68 0.3299
WVFGRD96   96.0   340    50    75   4.68 0.3288
WVFGRD96   98.0   155    30   -65   4.70 0.3304
WVFGRD96  100.0   155    30   -65   4.71 0.3385
WVFGRD96  102.0   155    35   -60   4.72 0.3440
WVFGRD96  104.0   155    35   -60   4.73 0.3518
WVFGRD96  106.0   155    35   -60   4.73 0.3583
WVFGRD96  108.0   155    35   -60   4.73 0.3625

The best solution is

WVFGRD96   20.0   165    75    80   4.37 0.8275

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Mon Mar 24 12:37:57 CDT 2014