2014/03/23 22:04:26 -19.819 -70.728 18.2 4.9 Chile
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/03/23 22:04:26:0 -19.82 -70.73 18.2 4.9 Chile Stations used: C.GO01 CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 3.85e+23 dyne-cm Mw = 4.99 Z = 24 km Plane Strike Dip Rake NP1 146 83 103 NP2 265 15 30 Principal Axes: Axis Value Plunge Azimuth T 3.85e+23 51 70 N 0.00e+00 13 324 P -3.85e+23 36 224 Moment Tensor: (dyne-cm) Component Value Mxx -1.10e+23 Mxy -7.65e+22 Mxz 1.94e+23 Myy 1.42e+22 Myz 3.06e+23 Mzz 9.61e+22 -------------- --------#######------- ###--###################---- ###--#######################-- ###-----########################-- ##--------#########################- ##----------#########################- ##------------#########################- #--------------############# ######### #----------------############ T #########- #-----------------########### ########## -------------------####################### ---------------------##################### ---------------------################### ----------------------################## -------- ------------############### ------- P -------------############# ------ ---------------########## -----------------------####### ------------------------#### ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 9.61e+22 1.94e+23 -3.06e+23 1.94e+23 -1.10e+23 7.65e+22 -3.06e+23 7.65e+22 1.42e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140323220426/index.html |
STK = 265 DIP = 15 RAKE = 30 MW = 4.99 HS = 24.0
The NDK file is 20140323220426.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/03/23 22:04:26:0 -19.82 -70.73 18.2 4.9 Chile Stations used: C.GO01 CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 3.85e+23 dyne-cm Mw = 4.99 Z = 24 km Plane Strike Dip Rake NP1 146 83 103 NP2 265 15 30 Principal Axes: Axis Value Plunge Azimuth T 3.85e+23 51 70 N 0.00e+00 13 324 P -3.85e+23 36 224 Moment Tensor: (dyne-cm) Component Value Mxx -1.10e+23 Mxy -7.65e+22 Mxz 1.94e+23 Myy 1.42e+22 Myz 3.06e+23 Mzz 9.61e+22 -------------- --------#######------- ###--###################---- ###--#######################-- ###-----########################-- ##--------#########################- ##----------#########################- ##------------#########################- #--------------############# ######### #----------------############ T #########- #-----------------########### ########## -------------------####################### ---------------------##################### ---------------------################### ----------------------################## -------- ------------############### ------- P -------------############# ------ ---------------########## -----------------------####### ------------------------#### ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 9.61e+22 1.94e+23 -3.06e+23 1.94e+23 -1.10e+23 7.65e+22 -3.06e+23 7.65e+22 1.42e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140323220426/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 165 45 90 4.69 0.4273 WVFGRD96 4.0 340 60 85 4.76 0.2986 WVFGRD96 6.0 270 10 30 4.77 0.4250 WVFGRD96 8.0 270 10 30 4.85 0.5199 WVFGRD96 10.0 270 10 35 4.87 0.6200 WVFGRD96 12.0 260 15 25 4.88 0.6962 WVFGRD96 14.0 265 15 30 4.90 0.7541 WVFGRD96 16.0 265 15 30 4.91 0.7981 WVFGRD96 18.0 265 15 30 4.93 0.8293 WVFGRD96 20.0 260 15 25 4.95 0.8498 WVFGRD96 22.0 265 15 30 4.97 0.8613 WVFGRD96 24.0 265 15 30 4.99 0.8653 WVFGRD96 26.0 260 15 25 5.00 0.8619 WVFGRD96 28.0 265 10 30 5.01 0.8517 WVFGRD96 30.0 265 10 30 5.02 0.8356 WVFGRD96 32.0 265 10 30 5.03 0.8137 WVFGRD96 34.0 270 10 35 5.04 0.7881 WVFGRD96 36.0 270 10 35 5.04 0.7613 WVFGRD96 38.0 270 10 40 5.05 0.7360 WVFGRD96 40.0 285 5 50 5.19 0.7131 WVFGRD96 42.0 270 10 35 5.20 0.6786 WVFGRD96 44.0 275 10 40 5.20 0.6462 WVFGRD96 46.0 275 10 40 5.20 0.6155 WVFGRD96 48.0 270 10 35 5.21 0.5862 WVFGRD96 50.0 270 10 35 5.21 0.5577 WVFGRD96 52.0 270 10 35 5.22 0.5315 WVFGRD96 54.0 260 10 25 5.22 0.5058 WVFGRD96 56.0 260 10 25 5.23 0.4822 WVFGRD96 58.0 325 90 -70 5.22 0.4605 WVFGRD96 60.0 145 90 70 5.23 0.4438 WVFGRD96 62.0 145 90 70 5.23 0.4281 WVFGRD96 64.0 145 90 70 5.24 0.4132 WVFGRD96 66.0 160 65 85 5.29 0.4011 WVFGRD96 68.0 145 70 75 5.29 0.3931 WVFGRD96 70.0 150 70 80 5.29 0.3866 WVFGRD96 72.0 150 70 85 5.30 0.3806 WVFGRD96 74.0 150 70 85 5.30 0.3746 WVFGRD96 76.0 165 20 -60 5.27 0.3724 WVFGRD96 78.0 115 30 -100 5.26 0.3777 WVFGRD96 80.0 305 60 -85 5.27 0.3842 WVFGRD96 82.0 305 60 -90 5.28 0.3902 WVFGRD96 84.0 305 60 -90 5.28 0.3960 WVFGRD96 86.0 305 65 -100 5.30 0.4013 WVFGRD96 88.0 150 25 -70 5.30 0.4071 WVFGRD96 90.0 150 25 -70 5.31 0.4124 WVFGRD96 92.0 150 25 -70 5.32 0.4164 WVFGRD96 94.0 155 30 -65 5.32 0.4209 WVFGRD96 96.0 155 30 -65 5.32 0.4248 WVFGRD96 98.0 155 30 -65 5.33 0.4323 WVFGRD96 100.0 155 30 -65 5.33 0.4361 WVFGRD96 102.0 155 30 -65 5.34 0.4435 WVFGRD96 104.0 155 30 -65 5.34 0.4505 WVFGRD96 106.0 155 30 -65 5.35 0.4528 WVFGRD96 108.0 155 30 -65 5.35 0.4582
The best solution is
WVFGRD96 24.0 265 15 30 4.99 0.8653
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: