Location

2014/03/23 21:17:27 -19.709 -70.554 21.7 4.7 Chile

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2014/03/23 21:17:27:0 -19.71  -70.55  21.7 4.7 Chile
 
 Stations used:
   C.GO01 CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB09 CX.PB10 
   CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ 
   IU.LVC 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 8.41e+22 dyne-cm
  Mw = 4.55 
  Z  = 24 km
  Plane   Strike  Dip  Rake
   NP1      155    75    93
   NP2      325    15    80
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   8.41e+22     60      69
    N   0.00e+00      3     335
    P  -8.41e+22     30     243

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.01e+22
       Mxy    -1.82e+22
       Mxz     2.96e+22
       Myy    -3.14e+22
       Myz     6.69e+22
       Mzz     4.14e+22
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 --###############-----              
              -----##################-----           
             -------###################----          
           ---------#####################----        
          ----------#######################---       
         ------------#######################---      
        -------------########################---     
        --------------############   ########---     
       ----------------########### T #########---    
       ----------------###########   #########---    
       -----------------######################---    
       ------------------#####################---    
        -----   ----------####################--     
        ----- P -----------###################--     
         ----   ------------#################--      
          -------------------################-       
           -------------------##############-        
             -------------------###########          
              -------------------########-           
                 ------------------####              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  4.14e+22   2.96e+22  -6.69e+22 
  2.96e+22  -1.01e+22   1.82e+22 
 -6.69e+22   1.82e+22  -3.14e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140323211727/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 325
      DIP = 15
     RAKE = 80
       MW = 4.55
       HS = 24.0

The NDK file is 20140323211727.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2014/03/23 21:17:27:0 -19.71  -70.55  21.7 4.7 Chile
 
 Stations used:
   C.GO01 CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB09 CX.PB10 
   CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ 
   IU.LVC 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 8.41e+22 dyne-cm
  Mw = 4.55 
  Z  = 24 km
  Plane   Strike  Dip  Rake
   NP1      155    75    93
   NP2      325    15    80
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   8.41e+22     60      69
    N   0.00e+00      3     335
    P  -8.41e+22     30     243

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.01e+22
       Mxy    -1.82e+22
       Mxz     2.96e+22
       Myy    -3.14e+22
       Myz     6.69e+22
       Mzz     4.14e+22
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 --###############-----              
              -----##################-----           
             -------###################----          
           ---------#####################----        
          ----------#######################---       
         ------------#######################---      
        -------------########################---     
        --------------############   ########---     
       ----------------########### T #########---    
       ----------------###########   #########---    
       -----------------######################---    
       ------------------#####################---    
        -----   ----------####################--     
        ----- P -----------###################--     
         ----   ------------#################--      
          -------------------################-       
           -------------------##############-        
             -------------------###########          
              -------------------########-           
                 ------------------####              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  4.14e+22   2.96e+22  -6.69e+22 
  2.96e+22  -1.01e+22   1.82e+22 
 -6.69e+22   1.82e+22  -3.14e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140323211727/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   355    45    90   4.27 0.3667
WVFGRD96    4.0   130    90    30   4.28 0.3088
WVFGRD96    6.0   150    85    75   4.35 0.3970
WVFGRD96    8.0   150    85    75   4.43 0.4955
WVFGRD96   10.0   155    80    75   4.45 0.6024
WVFGRD96   12.0   160    75    75   4.46 0.6839
WVFGRD96   14.0   160    75    75   4.48 0.7438
WVFGRD96   16.0   165    70    80   4.50 0.7860
WVFGRD96   18.0   325    20    75   4.51 0.8139
WVFGRD96   20.0   325    20    75   4.52 0.8323
WVFGRD96   22.0   325    15    80   4.54 0.8391
WVFGRD96   24.0   325    15    80   4.55 0.8399
WVFGRD96   26.0   325    15    80   4.57 0.8341
WVFGRD96   28.0   325    15    80   4.58 0.8213
WVFGRD96   30.0   325    15    80   4.59 0.8033
WVFGRD96   32.0   325    15    80   4.60 0.7810
WVFGRD96   34.0   330    15    85   4.61 0.7556
WVFGRD96   36.0   335    15    90   4.62 0.7295
WVFGRD96   38.0   155    75    90   4.62 0.7044
WVFGRD96   40.0   155    80    90   4.76 0.6774
WVFGRD96   42.0   155    80    90   4.77 0.6526
WVFGRD96   44.0   155    75    85   4.79 0.6276
WVFGRD96   46.0   335    10    90   4.79 0.6029
WVFGRD96   48.0   330    10    85   4.79 0.5785
WVFGRD96   50.0   155    90    95   4.79 0.5563
WVFGRD96   52.0   215     5   -25   4.80 0.5357
WVFGRD96   54.0   230    10   -15   4.80 0.5161
WVFGRD96   56.0   200    10   -40   4.81 0.4974
WVFGRD96   58.0   160    10   -75   4.82 0.4812
WVFGRD96   60.0   160    10   -75   4.82 0.4673
WVFGRD96   62.0   160    10   -75   4.83 0.4532
WVFGRD96   64.0   160    15   -75   4.83 0.4392
WVFGRD96   66.0   170    15   -65   4.84 0.4272
WVFGRD96   68.0   160    20   -70   4.84 0.4152
WVFGRD96   70.0   160    20   -70   4.84 0.4043
WVFGRD96   72.0   160    20   -70   4.85 0.3933
WVFGRD96   74.0   165    25   -65   4.85 0.3839
WVFGRD96   76.0   175    30   -60   4.86 0.3852
WVFGRD96   78.0   175    30   -60   4.86 0.3877
WVFGRD96   80.0   170    30   -60   4.87 0.3895
WVFGRD96   82.0   170    30   -60   4.88 0.3904
WVFGRD96   84.0   175    35   -60   4.88 0.3915
WVFGRD96   86.0   175    35   -60   4.88 0.3920
WVFGRD96   88.0   175    35   -60   4.88 0.3926
WVFGRD96   90.0   175    35   -60   4.89 0.3923
WVFGRD96   92.0   165    35   -75   4.88 0.3922
WVFGRD96   94.0   165    35   -75   4.88 0.3937
WVFGRD96   96.0   165    35   -75   4.89 0.3951
WVFGRD96   98.0   165    35   -75   4.89 0.3959
WVFGRD96  100.0   165    35   -75   4.90 0.3957
WVFGRD96  102.0   165    35   -75   4.90 0.3955
WVFGRD96  104.0   170    40   -70   4.90 0.3983
WVFGRD96  106.0   170    40   -70   4.90 0.3998
WVFGRD96  108.0   170    40   -70   4.91 0.4055

The best solution is

WVFGRD96   24.0   325    15    80   4.55 0.8399

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Mon Mar 24 12:31:43 CDT 2014