2014/03/23 20:23:03 -19.905 -70.934 23.4 5.3 Chile
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/03/23 20:23:03:0 -19.91 -70.93 23.4 5.3 Chile Stations used: C.GO01 C.GO02 CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 3.47e+23 dyne-cm Mw = 4.96 Z = 20 km Plane Strike Dip Rake NP1 160 60 85 NP2 350 30 99 Principal Axes: Axis Value Plunge Azimuth T 3.47e+23 74 57 N 0.00e+00 4 162 P -3.47e+23 15 254 Moment Tensor: (dyne-cm) Component Value Mxx -1.82e+22 Mxy -7.61e+22 Mxz 7.33e+22 Myy -2.81e+23 Myz 1.57e+23 Mzz 2.99e+23 ########------ ---#############------ -----################------- ------##################------ --------###################------- ---------#####################------ ----------######################------ -----------######################------- -----------############ ########------ ------------############ T ########------- -------------########### #########------ -------------#######################------ -- ---------######################------ - P ----------#####################----- - -----------###################------ --------------###################----- ---------------################----- ---------------##############----- --------------############---- ---------------#########---- --------------#####--- ------------## Global CMT Convention Moment Tensor: R T P 2.99e+23 7.33e+22 -1.57e+23 7.33e+22 -1.82e+22 7.61e+22 -1.57e+23 7.61e+22 -2.81e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140323202303/index.html |
STK = 160 DIP = 60 RAKE = 85 MW = 4.96 HS = 20.0
The NDK file is 20140323202303.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/03/23 20:23:03:0 -19.91 -70.93 23.4 5.3 Chile Stations used: C.GO01 C.GO02 CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 3.47e+23 dyne-cm Mw = 4.96 Z = 20 km Plane Strike Dip Rake NP1 160 60 85 NP2 350 30 99 Principal Axes: Axis Value Plunge Azimuth T 3.47e+23 74 57 N 0.00e+00 4 162 P -3.47e+23 15 254 Moment Tensor: (dyne-cm) Component Value Mxx -1.82e+22 Mxy -7.61e+22 Mxz 7.33e+22 Myy -2.81e+23 Myz 1.57e+23 Mzz 2.99e+23 ########------ ---#############------ -----################------- ------##################------ --------###################------- ---------#####################------ ----------######################------ -----------######################------- -----------############ ########------ ------------############ T ########------- -------------########### #########------ -------------#######################------ -- ---------######################------ - P ----------#####################----- - -----------###################------ --------------###################----- ---------------################----- ---------------##############----- --------------############---- ---------------#########---- --------------#####--- ------------## Global CMT Convention Moment Tensor: R T P 2.99e+23 7.33e+22 -1.57e+23 7.33e+22 -1.82e+22 7.61e+22 -1.57e+23 7.61e+22 -2.81e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140323202303/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 165 40 -90 4.70 0.4409 WVFGRD96 4.0 180 15 -85 4.77 0.3052 WVFGRD96 6.0 215 10 -50 4.77 0.4322 WVFGRD96 8.0 210 5 -50 4.85 0.5154 WVFGRD96 10.0 235 5 -25 4.85 0.5947 WVFGRD96 12.0 170 80 85 4.87 0.6553 WVFGRD96 14.0 350 25 95 4.91 0.7206 WVFGRD96 16.0 160 60 85 4.94 0.7767 WVFGRD96 18.0 160 60 85 4.95 0.8103 WVFGRD96 20.0 160 60 85 4.96 0.8243 WVFGRD96 22.0 160 60 85 4.97 0.8238 WVFGRD96 24.0 160 60 80 4.98 0.8129 WVFGRD96 26.0 160 60 80 4.99 0.7947 WVFGRD96 28.0 160 60 80 5.00 0.7701 WVFGRD96 30.0 160 60 85 5.00 0.7401 WVFGRD96 32.0 160 60 85 5.01 0.7049 WVFGRD96 34.0 160 60 85 5.02 0.6648 WVFGRD96 36.0 160 60 80 5.03 0.6220 WVFGRD96 38.0 160 65 85 5.03 0.5813 WVFGRD96 40.0 345 20 90 5.15 0.5429 WVFGRD96 42.0 165 65 90 5.16 0.5080 WVFGRD96 44.0 160 65 85 5.16 0.4725 WVFGRD96 46.0 160 65 85 5.17 0.4380 WVFGRD96 48.0 165 65 90 5.17 0.4047 WVFGRD96 50.0 165 65 90 5.17 0.3736 WVFGRD96 52.0 160 70 85 5.17 0.3461 WVFGRD96 54.0 10 20 -65 5.17 0.3203 WVFGRD96 56.0 15 20 -60 5.17 0.3081 WVFGRD96 58.0 10 15 -65 5.17 0.2971 WVFGRD96 60.0 20 15 -55 5.18 0.2893 WVFGRD96 62.0 35 15 -35 5.18 0.2822 WVFGRD96 64.0 345 75 80 5.18 0.2788 WVFGRD96 66.0 345 70 80 5.19 0.2815 WVFGRD96 68.0 345 70 80 5.20 0.2848 WVFGRD96 70.0 345 70 80 5.20 0.2897 WVFGRD96 72.0 345 70 80 5.21 0.2944 WVFGRD96 74.0 345 65 80 5.22 0.2988 WVFGRD96 76.0 345 65 80 5.22 0.3009 WVFGRD96 78.0 185 25 105 5.23 0.3037 WVFGRD96 80.0 185 30 105 5.23 0.3067 WVFGRD96 82.0 185 30 105 5.23 0.3099 WVFGRD96 84.0 180 30 100 5.24 0.3095 WVFGRD96 86.0 350 60 85 5.24 0.3115 WVFGRD96 88.0 345 60 80 5.24 0.3129 WVFGRD96 90.0 350 55 85 5.24 0.3104 WVFGRD96 92.0 350 55 85 5.24 0.3123 WVFGRD96 94.0 145 25 80 5.26 0.3138 WVFGRD96 96.0 145 25 85 5.26 0.3117 WVFGRD96 98.0 330 65 85 5.27 0.3170 WVFGRD96 100.0 330 65 85 5.27 0.3155 WVFGRD96 102.0 350 55 85 5.26 0.3208 WVFGRD96 104.0 180 35 100 5.26 0.3218 WVFGRD96 106.0 180 35 100 5.26 0.3198 WVFGRD96 108.0 180 35 100 5.26 0.3239
The best solution is
WVFGRD96 20.0 160 60 85 4.96 0.8243
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: