2014/03/23 18:19:59 -19.771 -70.947 6.2 6.1 Chile
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/03/23 18:19:59:0 -19.77 -70.95 6.2 6.1 Chile Stations used: CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 2.19e+25 dyne-cm Mw = 6.16 Z = 26 km Plane Strike Dip Rake NP1 155 65 90 NP2 335 25 90 Principal Axes: Axis Value Plunge Azimuth T 2.19e+25 70 65 N 0.00e+00 -0 335 P -2.19e+25 20 245 Moment Tensor: (dyne-cm) Component Value Mxx -2.99e+24 Mxy -6.42e+24 Mxz 5.94e+24 Myy -1.38e+25 Myz 1.27e+25 Mzz 1.68e+25 -------------- --############-------- -----################------- -----###################------ -------#####################------ ---------#####################------ ----------######################------ -----------#######################------ ------------############ ########----- -------------############ T #########----- --------------########### #########----- --------------#######################----- ---------------######################----- --- ---------#####################---- --- P ----------####################---- -- -----------###################--- -----------------################--- -----------------##############--- -----------------###########-- ------------------########-- -----------------####- -------------- Global CMT Convention Moment Tensor: R T P 1.68e+25 5.94e+24 -1.27e+25 5.94e+24 -2.99e+24 6.42e+24 -1.27e+25 6.42e+24 -1.38e+25 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140323181959/index.html |
STK = 335 DIP = 25 RAKE = 90 MW = 6.16 HS = 26.0
The NDK file is 20140323181959.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/03/23 18:19:59:0 -19.77 -70.95 6.2 6.1 Chile Stations used: CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 2.19e+25 dyne-cm Mw = 6.16 Z = 26 km Plane Strike Dip Rake NP1 155 65 90 NP2 335 25 90 Principal Axes: Axis Value Plunge Azimuth T 2.19e+25 70 65 N 0.00e+00 -0 335 P -2.19e+25 20 245 Moment Tensor: (dyne-cm) Component Value Mxx -2.99e+24 Mxy -6.42e+24 Mxz 5.94e+24 Myy -1.38e+25 Myz 1.27e+25 Mzz 1.68e+25 -------------- --############-------- -----################------- -----###################------ -------#####################------ ---------#####################------ ----------######################------ -----------#######################------ ------------############ ########----- -------------############ T #########----- --------------########### #########----- --------------#######################----- ---------------######################----- --- ---------#####################---- --- P ----------####################---- -- -----------###################--- -----------------################--- -----------------##############--- -----------------###########-- ------------------########-- -----------------####- -------------- Global CMT Convention Moment Tensor: R T P 1.68e+25 5.94e+24 -1.27e+25 5.94e+24 -2.99e+24 6.42e+24 -1.27e+25 6.42e+24 -1.38e+25 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140323181959/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 160 40 90 5.85 0.4139 WVFGRD96 4.0 155 30 80 5.91 0.2916 WVFGRD96 6.0 245 15 -15 5.92 0.4174 WVFGRD96 8.0 240 10 -20 6.00 0.5091 WVFGRD96 10.0 235 10 -20 6.01 0.6058 WVFGRD96 12.0 235 15 -20 6.03 0.6762 WVFGRD96 14.0 235 15 -20 6.05 0.7267 WVFGRD96 16.0 295 15 45 6.07 0.7624 WVFGRD96 18.0 310 15 60 6.08 0.7948 WVFGRD96 20.0 330 20 85 6.11 0.8194 WVFGRD96 22.0 330 20 85 6.13 0.8362 WVFGRD96 24.0 330 20 85 6.14 0.8456 WVFGRD96 26.0 335 25 90 6.16 0.8480 WVFGRD96 28.0 335 25 90 6.17 0.8451 WVFGRD96 30.0 155 65 90 6.18 0.8360 WVFGRD96 32.0 335 25 90 6.19 0.8202 WVFGRD96 34.0 155 65 90 6.20 0.7983 WVFGRD96 36.0 155 65 90 6.21 0.7718 WVFGRD96 38.0 330 25 85 6.23 0.7437 WVFGRD96 40.0 335 20 90 6.35 0.7190 WVFGRD96 42.0 335 20 90 6.36 0.6881 WVFGRD96 44.0 335 20 90 6.37 0.6563 WVFGRD96 46.0 335 20 90 6.37 0.6246 WVFGRD96 48.0 335 20 90 6.38 0.5930 WVFGRD96 50.0 340 20 95 6.39 0.5624 WVFGRD96 52.0 340 20 95 6.39 0.5334 WVFGRD96 54.0 330 20 80 6.40 0.5063 WVFGRD96 56.0 340 15 95 6.40 0.4815 WVFGRD96 58.0 345 15 100 6.40 0.4612 WVFGRD96 60.0 335 15 85 6.41 0.4434 WVFGRD96 62.0 330 15 80 6.41 0.4268 WVFGRD96 64.0 340 10 95 6.42 0.4130 WVFGRD96 66.0 325 10 75 6.42 0.4034 WVFGRD96 68.0 320 10 70 6.43 0.3947 WVFGRD96 70.0 305 10 55 6.43 0.3867 WVFGRD96 72.0 310 5 60 6.44 0.3821 WVFGRD96 74.0 295 5 45 6.44 0.3780 WVFGRD96 76.0 230 0 -15 6.44 0.3738 WVFGRD96 78.0 140 0 -105 6.45 0.3722 WVFGRD96 80.0 335 85 -75 6.44 0.3726 WVFGRD96 82.0 200 5 -45 6.46 0.3731 WVFGRD96 84.0 190 5 -55 6.47 0.3749 WVFGRD96 86.0 180 5 -65 6.48 0.3759 WVFGRD96 88.0 190 10 -55 6.47 0.3771 WVFGRD96 90.0 325 65 -85 6.44 0.3825 WVFGRD96 92.0 325 65 -85 6.45 0.3905 WVFGRD96 94.0 325 65 -85 6.45 0.3965 WVFGRD96 96.0 135 25 -100 6.46 0.4023 WVFGRD96 98.0 135 25 -100 6.47 0.4068 WVFGRD96 100.0 140 30 -90 6.47 0.4118 WVFGRD96 102.0 320 65 -100 6.48 0.4158 WVFGRD96 104.0 320 65 -100 6.49 0.4213 WVFGRD96 106.0 160 25 -70 6.50 0.4249 WVFGRD96 108.0 160 25 -70 6.50 0.4286
The best solution is
WVFGRD96 26.0 335 25 90 6.16 0.8480
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: