2014/03/23 12:48:05 -19.740 -71.013 16.2 4.8 Chile
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/03/23 12:48:05:0 -19.74 -71.01 16.2 4.8 Chile Stations used: C.GO01 CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 3.94e+22 dyne-cm Mw = 4.33 Z = 20 km Plane Strike Dip Rake NP1 165 65 75 NP2 17 29 119 Principal Axes: Axis Value Plunge Azimuth T 3.94e+22 67 48 N 0.00e+00 14 171 P -3.94e+22 19 266 Moment Tensor: (dyne-cm) Component Value Mxx 2.67e+21 Mxy 7.15e+20 Mxz 1.05e+22 Myy -3.18e+22 Myz 2.25e+22 Mzz 2.91e+22 -############# -----###############-- -------##################--- --------###################--- ---------#####################---- ----------######################---- -----------#######################---- ------------########### #########----- -------------########## T #########----- --------------########## #########------ -- ---------######################------ -- P ----------#####################------ -- ----------#####################------ ---------------###################------ ---------------###################------ ---------------#################------ ---------------###############------ ---------------############------- --------------##########------ ---------------#####-------- -------------#-------- -----######--- Global CMT Convention Moment Tensor: R T P 2.91e+22 1.05e+22 -2.25e+22 1.05e+22 2.67e+21 -7.15e+20 -2.25e+22 -7.15e+20 -3.18e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140323124805/index.html |
STK = 165 DIP = 65 RAKE = 75 MW = 4.33 HS = 20.0
The NDK file is 20140323124805.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/03/23 12:48:05:0 -19.74 -71.01 16.2 4.8 Chile Stations used: C.GO01 CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB09 CX.PB10 CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 3.94e+22 dyne-cm Mw = 4.33 Z = 20 km Plane Strike Dip Rake NP1 165 65 75 NP2 17 29 119 Principal Axes: Axis Value Plunge Azimuth T 3.94e+22 67 48 N 0.00e+00 14 171 P -3.94e+22 19 266 Moment Tensor: (dyne-cm) Component Value Mxx 2.67e+21 Mxy 7.15e+20 Mxz 1.05e+22 Myy -3.18e+22 Myz 2.25e+22 Mzz 2.91e+22 -############# -----###############-- -------##################--- --------###################--- ---------#####################---- ----------######################---- -----------#######################---- ------------########### #########----- -------------########## T #########----- --------------########## #########------ -- ---------######################------ -- P ----------#####################------ -- ----------#####################------ ---------------###################------ ---------------###################------ ---------------#################------ ---------------###############------ ---------------############------- --------------##########------ ---------------#####-------- -------------#-------- -----######--- Global CMT Convention Moment Tensor: R T P 2.91e+22 1.05e+22 -2.25e+22 1.05e+22 2.67e+21 -7.15e+20 -2.25e+22 -7.15e+20 -3.18e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140323124805/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 0 50 -90 4.07 0.4341 WVFGRD96 4.0 220 10 -45 4.17 0.3287 WVFGRD96 6.0 240 10 -25 4.16 0.4723 WVFGRD96 8.0 240 10 -25 4.24 0.5602 WVFGRD96 10.0 260 10 -5 4.24 0.6410 WVFGRD96 12.0 300 10 40 4.25 0.7005 WVFGRD96 14.0 165 75 95 4.28 0.7503 WVFGRD96 16.0 170 70 80 4.30 0.7883 WVFGRD96 18.0 165 65 90 4.32 0.8091 WVFGRD96 20.0 165 65 75 4.33 0.8157 WVFGRD96 22.0 335 25 80 4.35 0.8105 WVFGRD96 24.0 335 25 80 4.36 0.7967 WVFGRD96 26.0 160 65 75 4.37 0.7780 WVFGRD96 28.0 155 65 70 4.38 0.7548 WVFGRD96 30.0 155 65 70 4.39 0.7280 WVFGRD96 32.0 155 65 70 4.40 0.6966 WVFGRD96 34.0 155 65 70 4.41 0.6610 WVFGRD96 36.0 155 65 70 4.41 0.6226 WVFGRD96 38.0 335 25 85 4.41 0.5843 WVFGRD96 40.0 330 20 75 4.54 0.5516 WVFGRD96 42.0 330 20 75 4.54 0.5141 WVFGRD96 44.0 335 25 80 4.55 0.4792 WVFGRD96 46.0 160 65 90 4.55 0.4455 WVFGRD96 48.0 165 70 75 4.55 0.4146 WVFGRD96 50.0 165 70 70 4.55 0.3864 WVFGRD96 52.0 165 70 70 4.56 0.3603 WVFGRD96 54.0 160 70 65 4.57 0.3386 WVFGRD96 56.0 160 70 65 4.57 0.3201 WVFGRD96 58.0 160 70 65 4.58 0.3026 WVFGRD96 60.0 55 25 -15 4.56 0.2930 WVFGRD96 62.0 345 75 75 4.56 0.2919 WVFGRD96 64.0 340 75 70 4.57 0.2946 WVFGRD96 66.0 335 75 70 4.59 0.2965 WVFGRD96 68.0 345 70 75 4.59 0.2987 WVFGRD96 70.0 340 70 70 4.60 0.3014 WVFGRD96 72.0 340 70 70 4.60 0.3030 WVFGRD96 74.0 340 70 70 4.61 0.3064 WVFGRD96 76.0 345 65 75 4.61 0.3076 WVFGRD96 78.0 345 65 75 4.61 0.3120 WVFGRD96 80.0 345 65 75 4.62 0.3163 WVFGRD96 82.0 340 65 70 4.62 0.3196 WVFGRD96 84.0 340 65 70 4.63 0.3189 WVFGRD96 86.0 345 60 75 4.63 0.3223 WVFGRD96 88.0 340 65 70 4.63 0.3250 WVFGRD96 90.0 335 65 65 4.64 0.3263 WVFGRD96 92.0 340 60 70 4.64 0.3312 WVFGRD96 94.0 340 60 70 4.64 0.3336 WVFGRD96 96.0 340 60 70 4.65 0.3344 WVFGRD96 98.0 340 60 70 4.65 0.3356 WVFGRD96 100.0 335 60 65 4.65 0.3389 WVFGRD96 102.0 335 60 65 4.66 0.3365 WVFGRD96 104.0 340 55 70 4.65 0.3386 WVFGRD96 106.0 340 55 70 4.65 0.3364 WVFGRD96 108.0 340 55 70 4.65 0.3380
The best solution is
WVFGRD96 20.0 165 65 75 4.33 0.8157
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: