2014/03/23 10:10:53 -20.089 -68.829 118.3 4.5 Chile
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/03/23 10:10:53:0 -20.09 -68.83 118.3 4.5 Chile Stations used: Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.66e+22 dyne-cm Mw = 4.08 Z = 100 km Plane Strike Dip Rake NP1 328 67 -101 NP2 175 25 -65 Principal Axes: Axis Value Plunge Azimuth T 1.66e+22 22 66 N 0.00e+00 10 332 P -1.66e+22 66 218 Moment Tensor: (dyne-cm) Component Value Mxx 6.02e+20 Mxy 3.92e+21 Mxz 7.18e+21 Myy 1.09e+22 Myz 9.08e+21 Mzz -1.15e+22 --############ ---################### ####---##################### ####------#################### ####-----------################### ####-------------################### #####---------------############# ## #####-----------------############ T ### #####-------------------########## ### #####---------------------################ #####----------------------############### #####-----------------------############## #####----------- ----------############# #####---------- P -----------########### #####---------- ------------########## #####------------------------######### #####------------------------####### #####-----------------------###### #####---------------------#### #####--------------------### #####----------------- ####---------- Global CMT Convention Moment Tensor: R T P -1.15e+22 7.18e+21 -9.08e+21 7.18e+21 6.02e+20 -3.92e+21 -9.08e+21 -3.92e+21 1.09e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140323101053/index.html |
STK = 175 DIP = 25 RAKE = -65 MW = 4.08 HS = 100.0
The NDK file is 20140323101053.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/03/23 10:10:53:0 -20.09 -68.83 118.3 4.5 Chile Stations used: Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.66e+22 dyne-cm Mw = 4.08 Z = 100 km Plane Strike Dip Rake NP1 328 67 -101 NP2 175 25 -65 Principal Axes: Axis Value Plunge Azimuth T 1.66e+22 22 66 N 0.00e+00 10 332 P -1.66e+22 66 218 Moment Tensor: (dyne-cm) Component Value Mxx 6.02e+20 Mxy 3.92e+21 Mxz 7.18e+21 Myy 1.09e+22 Myz 9.08e+21 Mzz -1.15e+22 --############ ---################### ####---##################### ####------#################### ####-----------################### ####-------------################### #####---------------############# ## #####-----------------############ T ### #####-------------------########## ### #####---------------------################ #####----------------------############### #####-----------------------############## #####----------- ----------############# #####---------- P -----------########### #####---------- ------------########## #####------------------------######### #####------------------------####### #####-----------------------###### #####---------------------#### #####--------------------### #####----------------- ####---------- Global CMT Convention Moment Tensor: R T P -1.15e+22 7.18e+21 -9.08e+21 7.18e+21 6.02e+20 -3.92e+21 -9.08e+21 -3.92e+21 1.09e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140323101053/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 325 65 20 3.21 0.2351 WVFGRD96 4.0 320 60 0 3.31 0.2794 WVFGRD96 6.0 130 60 -30 3.41 0.3175 WVFGRD96 8.0 130 60 -30 3.50 0.3365 WVFGRD96 10.0 130 65 -35 3.55 0.3397 WVFGRD96 12.0 60 55 20 3.62 0.3474 WVFGRD96 14.0 60 55 20 3.66 0.3663 WVFGRD96 16.0 55 60 15 3.67 0.3838 WVFGRD96 18.0 55 60 15 3.70 0.3980 WVFGRD96 20.0 50 65 15 3.70 0.4108 WVFGRD96 22.0 50 65 15 3.72 0.4238 WVFGRD96 24.0 50 65 15 3.74 0.4344 WVFGRD96 26.0 45 80 15 3.72 0.4448 WVFGRD96 28.0 225 65 25 3.76 0.4571 WVFGRD96 30.0 220 70 0 3.74 0.4662 WVFGRD96 32.0 220 70 0 3.75 0.4758 WVFGRD96 34.0 220 70 5 3.77 0.4850 WVFGRD96 36.0 225 50 35 3.83 0.4916 WVFGRD96 38.0 220 50 30 3.85 0.4955 WVFGRD96 40.0 40 90 0 3.84 0.4925 WVFGRD96 42.0 220 80 5 3.86 0.4934 WVFGRD96 44.0 220 85 5 3.88 0.4898 WVFGRD96 46.0 220 80 5 3.89 0.4878 WVFGRD96 48.0 220 80 5 3.91 0.4830 WVFGRD96 50.0 220 75 5 3.91 0.4794 WVFGRD96 52.0 220 65 5 3.92 0.4804 WVFGRD96 54.0 45 80 20 3.99 0.4811 WVFGRD96 56.0 215 65 -25 3.96 0.4846 WVFGRD96 58.0 220 75 -25 3.97 0.4907 WVFGRD96 60.0 220 75 -25 3.98 0.4953 WVFGRD96 62.0 220 70 -25 3.98 0.5005 WVFGRD96 64.0 220 70 -25 3.99 0.5052 WVFGRD96 66.0 220 70 -25 4.00 0.5079 WVFGRD96 68.0 220 70 -30 4.01 0.5118 WVFGRD96 70.0 220 70 -30 4.02 0.5146 WVFGRD96 72.0 220 65 -30 4.02 0.5159 WVFGRD96 74.0 220 65 -30 4.02 0.5189 WVFGRD96 76.0 220 65 -30 4.03 0.5208 WVFGRD96 78.0 225 70 -25 4.04 0.5220 WVFGRD96 80.0 220 60 -30 4.03 0.5216 WVFGRD96 82.0 195 35 -45 4.04 0.5238 WVFGRD96 84.0 190 30 -50 4.05 0.5270 WVFGRD96 86.0 190 30 -50 4.05 0.5274 WVFGRD96 88.0 190 30 -50 4.05 0.5274 WVFGRD96 90.0 190 30 -50 4.05 0.5292 WVFGRD96 92.0 180 25 -60 4.07 0.5293 WVFGRD96 94.0 180 25 -60 4.07 0.5304 WVFGRD96 96.0 180 25 -60 4.07 0.5321 WVFGRD96 98.0 180 25 -60 4.07 0.5308 WVFGRD96 100.0 190 25 -55 4.07 0.5330 WVFGRD96 102.0 190 25 -55 4.07 0.5314 WVFGRD96 104.0 175 20 -70 4.08 0.5311 WVFGRD96 106.0 175 20 -70 4.09 0.5312 WVFGRD96 108.0 175 20 -70 4.09 0.5307
The best solution is
WVFGRD96 100.0 190 25 -55 4.07 0.5330
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: