Location

2014/03/22 22:14:56 -19.709 -71.028 10.0 5.1 Chile

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2014/03/22 22:14:56:0 -19.71  -71.03  10.0 5.1 Chile
 
 Stations used:
   C.GO01 CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB09 CX.PB10 
   CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ 
   IU.LVC 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 3.02e+23 dyne-cm
  Mw = 4.92 
  Z  = 20 km
  Plane   Strike  Dip  Rake
   NP1      171    77    98
   NP2      320    15    60
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.02e+23     57      91
    N   0.00e+00      7     349
    P  -3.02e+23     32     255

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.55e+22
       Mxy    -5.76e+22
       Mxz     3.39e+22
       Myy    -1.15e+23
       Myz     2.67e+23
       Mzz     1.31e+23
                                                     
                                                     
                                                     
                                                     
                     ###-----------                  
                 #------#########------              
              ----------#############-----           
             -----------###############----          
           -------------#################----        
          --------------###################---       
         ---------------####################---      
        ----------------#####################---     
        ----------------######################--     
       -----------------######################---    
       ------------------##########   ########---    
       ------------------########## T #########--    
       ------   ---------##########   #########--    
        ----- P ---------######################-     
        -----   ----------####################--     
         -----------------####################-      
          -----------------##################-       
           ----------------#################-        
             ---------------###############          
              ---------------#############           
                 -------------#########              
                     ----------####                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.31e+23   3.39e+22  -2.67e+23 
  3.39e+22  -1.55e+22   5.76e+22 
 -2.67e+23   5.76e+22  -1.15e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140322221456/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 320
      DIP = 15
     RAKE = 60
       MW = 4.92
       HS = 20.0

The NDK file is 20140322221456.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2014/03/22 22:14:56:0 -19.71  -71.03  10.0 5.1 Chile
 
 Stations used:
   C.GO01 CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB09 CX.PB10 
   CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ 
   IU.LVC 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 3.02e+23 dyne-cm
  Mw = 4.92 
  Z  = 20 km
  Plane   Strike  Dip  Rake
   NP1      171    77    98
   NP2      320    15    60
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.02e+23     57      91
    N   0.00e+00      7     349
    P  -3.02e+23     32     255

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.55e+22
       Mxy    -5.76e+22
       Mxz     3.39e+22
       Myy    -1.15e+23
       Myz     2.67e+23
       Mzz     1.31e+23
                                                     
                                                     
                                                     
                                                     
                     ###-----------                  
                 #------#########------              
              ----------#############-----           
             -----------###############----          
           -------------#################----        
          --------------###################---       
         ---------------####################---      
        ----------------#####################---     
        ----------------######################--     
       -----------------######################---    
       ------------------##########   ########---    
       ------------------########## T #########--    
       ------   ---------##########   #########--    
        ----- P ---------######################-     
        -----   ----------####################--     
         -----------------####################-      
          -----------------##################-       
           ----------------#################-        
             ---------------###############          
              ---------------#############           
                 -------------#########              
                     ----------####                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.31e+23   3.39e+22  -2.67e+23 
  3.39e+22  -1.55e+22   5.76e+22 
 -2.67e+23   5.76e+22  -1.15e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140322221456/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.10 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0     0    50    90   4.56 0.3457
WVFGRD96    4.0   225    10   -40   4.55 0.2345
WVFGRD96    6.0   240    10   -25   4.59 0.3706
WVFGRD96    8.0   230    10   -35   4.70 0.4653
WVFGRD96   10.0   225    15   -40   4.74 0.5591
WVFGRD96   12.0   230    15   -35   4.77 0.6296
WVFGRD96   14.0   320    10    60   4.81 0.6821
WVFGRD96   16.0   325    15    65   4.85 0.7268
WVFGRD96   18.0   320    15    60   4.89 0.7549
WVFGRD96   20.0   320    15    60   4.92 0.7651
WVFGRD96   22.0   320    15    60   4.96 0.7568
WVFGRD96   24.0   315    15    55   4.98 0.7325
WVFGRD96   26.0   315    15    55   5.00 0.6934
WVFGRD96   28.0   320    15    65   5.02 0.6427
WVFGRD96   30.0   165    75    95   5.03 0.5846
WVFGRD96   32.0   335    20    80   5.02 0.5281
WVFGRD96   34.0   165    70    95   5.02 0.4693
WVFGRD96   36.0   330    20    75   5.02 0.4161
WVFGRD96   38.0   325    20    70   5.01 0.3718
WVFGRD96   40.0    20    10   -65   5.15 0.3600
WVFGRD96   42.0    30    20   -45   5.14 0.3353
WVFGRD96   44.0    35    25   -40   5.15 0.3232
WVFGRD96   46.0    35    25   -40   5.16 0.3120
WVFGRD96   48.0    30    25   -50   5.17 0.3066
WVFGRD96   50.0    25    20   -60   5.19 0.3053
WVFGRD96   52.0    25    20   -60   5.20 0.3059
WVFGRD96   54.0    25    20   -60   5.21 0.2970
WVFGRD96   56.0    30    20   -55   5.22 0.2935
WVFGRD96   58.0    20    15   -65   5.23 0.2906
WVFGRD96   60.0    25    15   -60   5.24 0.2882
WVFGRD96   62.0    20    15   -65   5.25 0.2871
WVFGRD96   64.0    35    15   -50   5.25 0.2742
WVFGRD96   66.0    20    15   -65   5.27 0.2729
WVFGRD96   68.0    25    15   -60   5.28 0.2678
WVFGRD96   70.0   175    80   -95   5.27 0.2624
WVFGRD96   72.0   345    70    75   5.15 0.2520
WVFGRD96   74.0   340    70    75   5.15 0.2546
WVFGRD96   76.0   340    70    75   5.16 0.2568
WVFGRD96   78.0   335    70    70   5.16 0.2551
WVFGRD96   80.0   340    65    70   5.16 0.2571
WVFGRD96   82.0   340    65    70   5.16 0.2561
WVFGRD96   84.0   340    65    70   5.16 0.2580
WVFGRD96   86.0   340    60    70   5.16 0.2591
WVFGRD96   88.0   340    60    70   5.16 0.2588
WVFGRD96   90.0   340    60    70   5.16 0.2599
WVFGRD96   92.0   195    35   -65   5.16 0.2637
WVFGRD96   94.0   195    40   -65   5.17 0.2694
WVFGRD96   96.0   190    40   -70   5.17 0.2713
WVFGRD96   98.0   190    40   -70   5.17 0.2771
WVFGRD96  100.0   190    40   -70   5.18 0.2823
WVFGRD96  102.0   190    40   -70   5.18 0.2869
WVFGRD96  104.0   190    40   -70   5.19 0.2926
WVFGRD96  106.0   190    45   -75   5.19 0.2960
WVFGRD96  108.0   190    45   -75   5.19 0.3011

The best solution is

WVFGRD96   20.0   320    15    60   4.92 0.7651

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Sun Mar 23 06:06:04 CDT 2014