Location

2014/03/22 12:59:58 -19.770 -70.936 15.2 6.2 Chile

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2014/03/22 12:59:58:0 -19.77  -70.94  15.2 6.2 Chile
 
 Stations used:
   C.GO01 CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB09 CX.PB10 
   CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ 
   IU.LVC 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 1.66e+25 dyne-cm
  Mw = 6.08 
  Z  = 20 km
  Plane   Strike  Dip  Rake
   NP1      160    75    91
   NP2      335    15    85
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.66e+25     60      72
    N   0.00e+00      1     340
    P  -1.66e+25     30     249

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.19e+24
       Mxy    -2.93e+24
       Mxz     4.78e+24
       Myy    -7.08e+24
       Myz     1.36e+25
       Mzz     8.27e+24
                                                     
                                                     
                                                     
                                                     
                     -#######------                  
                 ----#############-----              
              -------#################----           
             --------###################---          
           ----------####################----        
          -----------######################---       
         -------------######################---      
        --------------#######################---     
        ---------------###########   ########---     
       ----------------########### T #########---    
       -----------------##########   #########---    
       -----------------######################---    
       ------   ---------#####################---    
        ----- P ----------####################--     
        -----   ----------####################--     
         ------------------##################--      
          ------------------################--       
           ------------------##############--        
             -----------------############-          
              ------------------#########-           
                 ----------------######              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  8.27e+24   4.78e+24  -1.36e+25 
  4.78e+24  -1.19e+24   2.93e+24 
 -1.36e+25   2.93e+24  -7.08e+24 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140322125958/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 335
      DIP = 15
     RAKE = 85
       MW = 6.08
       HS = 20.0

The NDK file is 20140322125958.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2014/03/22 12:59:58:0 -19.77  -70.94  15.2 6.2 Chile
 
 Stations used:
   C.GO01 CX.PATCX CX.PB01 CX.PB04 CX.PB07 CX.PB09 CX.PB10 
   CX.PB11 CX.PB12 CX.PB14 CX.PB15 CX.PB16 CX.PSGCX GT.LPAZ 
   IU.LVC 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 1.66e+25 dyne-cm
  Mw = 6.08 
  Z  = 20 km
  Plane   Strike  Dip  Rake
   NP1      160    75    91
   NP2      335    15    85
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.66e+25     60      72
    N   0.00e+00      1     340
    P  -1.66e+25     30     249

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.19e+24
       Mxy    -2.93e+24
       Mxz     4.78e+24
       Myy    -7.08e+24
       Myz     1.36e+25
       Mzz     8.27e+24
                                                     
                                                     
                                                     
                                                     
                     -#######------                  
                 ----#############-----              
              -------#################----           
             --------###################---          
           ----------####################----        
          -----------######################---       
         -------------######################---      
        --------------#######################---     
        ---------------###########   ########---     
       ----------------########### T #########---    
       -----------------##########   #########---    
       -----------------######################---    
       ------   ---------#####################---    
        ----- P ----------####################--     
        -----   ----------####################--     
         ------------------##################--      
          ------------------################--       
           ------------------##############--        
             -----------------############-          
              ------------------#########-           
                 ----------------######              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  8.27e+24   4.78e+24  -1.36e+25 
  4.78e+24  -1.19e+24   2.93e+24 
 -1.36e+25   2.93e+24  -7.08e+24 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140322125958/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.10 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   170    40    90   5.71 0.3281
WVFGRD96    4.0   220    10   -35   5.68 0.2112
WVFGRD96    6.0   225     5   -30   5.72 0.3450
WVFGRD96    8.0   225    10   -30   5.84 0.4391
WVFGRD96   10.0   235    10   -20   5.88 0.5386
WVFGRD96   12.0   255     5     0   5.92 0.6177
WVFGRD96   14.0   165    80    85   5.97 0.6869
WVFGRD96   16.0   165    75    85   6.01 0.7436
WVFGRD96   18.0   165    75    85   6.05 0.7819
WVFGRD96   20.0   335    15    85   6.08 0.8016
WVFGRD96   22.0   335    15    85   6.12 0.8009
WVFGRD96   24.0   330    15    80   6.15 0.7829
WVFGRD96   26.0   330    15    75   6.16 0.7500
WVFGRD96   28.0   165    75    95   6.18 0.7056
WVFGRD96   30.0   335    15    85   6.19 0.6532
WVFGRD96   32.0   160    70    90   6.19 0.5973
WVFGRD96   34.0   360    20   110   6.19 0.5376
WVFGRD96   36.0   340    15    90   6.19 0.4821
WVFGRD96   38.0   160    75    90   6.18 0.4338
WVFGRD96   40.0   335    15    80   6.30 0.3872
WVFGRD96   42.0   160    75    90   6.30 0.3437
WVFGRD96   44.0   160    70    80   6.30 0.3152
WVFGRD96   46.0   150    70    65   6.31 0.2960
WVFGRD96   48.0   150    70    65   6.32 0.2821
WVFGRD96   50.0   150    70    65   6.33 0.2658
WVFGRD96   52.0   155    70    70   6.33 0.2498
WVFGRD96   54.0   155    70    70   6.34 0.2360
WVFGRD96   56.0   155    70    70   6.34 0.2220
WVFGRD96   58.0   165    70    90   6.35 0.2091
WVFGRD96   60.0   165    70    90   6.36 0.2076
WVFGRD96   62.0   330    20    70   6.37 0.2049
WVFGRD96   64.0   330    20    70   6.38 0.2007
WVFGRD96   66.0   345    15    90   6.38 0.1970
WVFGRD96   68.0   340    15    85   6.39 0.1934
WVFGRD96   70.0   165    75    90   6.40 0.1909
WVFGRD96   72.0   335    30    70   6.36 0.1888
WVFGRD96   74.0   335    30    70   6.36 0.1898
WVFGRD96   76.0   340    25    80   6.38 0.1902
WVFGRD96   78.0   340    25    80   6.38 0.1897
WVFGRD96   80.0   175    65   100   6.38 0.1892
WVFGRD96   82.0   165    70    90   6.41 0.1906
WVFGRD96   84.0   340    20    85   6.41 0.1915
WVFGRD96   86.0   165    70    90   6.41 0.1929
WVFGRD96   88.0   165    70    90   6.41 0.1945
WVFGRD96   90.0   185    40   -70   6.27 0.1953
WVFGRD96   92.0   190    40   -65   6.27 0.1979
WVFGRD96   94.0   185    40   -70   6.28 0.2071
WVFGRD96   96.0   190    40   -65   6.29 0.2096
WVFGRD96   98.0   185    40   -70   6.29 0.2179
WVFGRD96  100.0   185    40   -70   6.30 0.2227
WVFGRD96  102.0   185    40   -70   6.30 0.2290
WVFGRD96  104.0   185    40   -70   6.31 0.2348
WVFGRD96  106.0   180    45   -75   6.31 0.2357
WVFGRD96  108.0   180    45   -75   6.32 0.2445

The best solution is

WVFGRD96   20.0   335    15    85   6.08 0.8016

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Sun Mar 23 06:07:36 CDT 2014