2014/03/20 18:41:31 -24.024 -68.986 93.2 5.1 Chile
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/03/20 18:41:31:0 -24.02 -68.99 93.2 5.1 Chile Stations used: C.GO01 C.GO02 C.GO03 CX.PB01 CX.PB04 CX.PB07 CX.PB09 CX.PB10 CX.PB11 CX.PB14 CX.PSGCX IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 5.62e+23 dyne-cm Mw = 5.10 Z = 86 km Plane Strike Dip Rake NP1 283 61 -132 NP2 165 50 -40 Principal Axes: Axis Value Plunge Azimuth T 5.62e+23 6 42 N 0.00e+00 36 308 P -5.62e+23 53 140 Moment Tensor: (dyne-cm) Component Value Mxx 1.89e+23 Mxy 3.75e+23 Mxz 2.51e+23 Myy 1.67e+23 Myz -1.32e+23 Mzz -3.56e+23 -############# ----################## ------#################### ------##################### T -------###################### ## --------############################ --------###-########################## ---######----------------############### #########--------------------########### ##########------------------------######## ###########-------------------------###### ###########---------------------------#### ###########-----------------------------## ###########------------- ------------- ############------------ P ------------- ###########------------ ------------ ###########------------------------- ############---------------------- ###########------------------- ############---------------- ###########----------- ###########--- Global CMT Convention Moment Tensor: R T P -3.56e+23 2.51e+23 1.32e+23 2.51e+23 1.89e+23 -3.75e+23 1.32e+23 -3.75e+23 1.67e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140320184131/index.html |
STK = 165 DIP = 50 RAKE = -40 MW = 5.10 HS = 86.0
The NDK file is 20140320184131.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/03/20 18:41:31:0 -24.02 -68.99 93.2 5.1 Chile Stations used: C.GO01 C.GO02 C.GO03 CX.PB01 CX.PB04 CX.PB07 CX.PB09 CX.PB10 CX.PB11 CX.PB14 CX.PSGCX IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 5.62e+23 dyne-cm Mw = 5.10 Z = 86 km Plane Strike Dip Rake NP1 283 61 -132 NP2 165 50 -40 Principal Axes: Axis Value Plunge Azimuth T 5.62e+23 6 42 N 0.00e+00 36 308 P -5.62e+23 53 140 Moment Tensor: (dyne-cm) Component Value Mxx 1.89e+23 Mxy 3.75e+23 Mxz 2.51e+23 Myy 1.67e+23 Myz -1.32e+23 Mzz -3.56e+23 -############# ----################## ------#################### ------##################### T -------###################### ## --------############################ --------###-########################## ---######----------------############### #########--------------------########### ##########------------------------######## ###########-------------------------###### ###########---------------------------#### ###########-----------------------------## ###########------------- ------------- ############------------ P ------------- ###########------------ ------------ ###########------------------------- ############---------------------- ###########------------------- ############---------------- ###########----------- ###########--- Global CMT Convention Moment Tensor: R T P -3.56e+23 2.51e+23 1.32e+23 2.51e+23 1.89e+23 -3.75e+23 1.32e+23 -3.75e+23 1.67e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140320184131/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 125 50 70 4.33 0.2469 WVFGRD96 4.0 125 45 75 4.42 0.2763 WVFGRD96 6.0 95 85 -30 4.33 0.2528 WVFGRD96 8.0 95 85 -35 4.40 0.2708 WVFGRD96 10.0 90 80 -35 4.43 0.2895 WVFGRD96 12.0 95 85 -30 4.45 0.3020 WVFGRD96 14.0 95 85 -30 4.47 0.3087 WVFGRD96 16.0 10 55 10 4.50 0.3222 WVFGRD96 18.0 10 60 10 4.53 0.3374 WVFGRD96 20.0 10 60 5 4.55 0.3507 WVFGRD96 22.0 10 60 5 4.58 0.3620 WVFGRD96 24.0 10 60 5 4.60 0.3719 WVFGRD96 26.0 10 60 5 4.62 0.3798 WVFGRD96 28.0 10 60 5 4.65 0.3867 WVFGRD96 30.0 10 60 5 4.67 0.3921 WVFGRD96 32.0 10 60 5 4.69 0.3967 WVFGRD96 34.0 10 60 5 4.71 0.3992 WVFGRD96 36.0 10 65 5 4.74 0.4024 WVFGRD96 38.0 5 65 5 4.76 0.4093 WVFGRD96 40.0 5 55 5 4.83 0.4157 WVFGRD96 42.0 0 60 -15 4.86 0.4234 WVFGRD96 44.0 0 60 -20 4.88 0.4321 WVFGRD96 46.0 0 60 -20 4.90 0.4399 WVFGRD96 48.0 0 60 -20 4.91 0.4457 WVFGRD96 50.0 175 65 -20 4.93 0.4558 WVFGRD96 52.0 175 60 -20 4.94 0.4752 WVFGRD96 54.0 175 60 -20 4.96 0.4963 WVFGRD96 56.0 175 60 -20 4.97 0.5153 WVFGRD96 58.0 175 65 -25 4.99 0.5334 WVFGRD96 60.0 170 60 -30 5.01 0.5539 WVFGRD96 62.0 170 60 -30 5.02 0.5764 WVFGRD96 64.0 170 60 -30 5.03 0.5969 WVFGRD96 66.0 170 60 -30 5.04 0.6163 WVFGRD96 68.0 170 60 -30 5.05 0.6332 WVFGRD96 70.0 170 60 -30 5.06 0.6474 WVFGRD96 72.0 170 55 -35 5.07 0.6597 WVFGRD96 74.0 170 55 -35 5.07 0.6710 WVFGRD96 76.0 170 55 -35 5.08 0.6801 WVFGRD96 78.0 170 55 -40 5.09 0.6872 WVFGRD96 80.0 170 55 -40 5.09 0.6942 WVFGRD96 82.0 170 55 -40 5.09 0.6976 WVFGRD96 84.0 165 50 -40 5.10 0.7001 WVFGRD96 86.0 165 50 -40 5.10 0.7007 WVFGRD96 88.0 165 50 -40 5.10 0.7001 WVFGRD96 90.0 165 50 -40 5.10 0.6983 WVFGRD96 92.0 165 50 -40 5.10 0.6948 WVFGRD96 94.0 165 50 -40 5.10 0.6912 WVFGRD96 96.0 165 50 -40 5.10 0.6862 WVFGRD96 98.0 165 50 -40 5.10 0.6805 WVFGRD96 100.0 165 50 -40 5.10 0.6753 WVFGRD96 102.0 165 50 -40 5.10 0.6693 WVFGRD96 104.0 165 50 -40 5.10 0.6621 WVFGRD96 106.0 165 50 -40 5.10 0.6551 WVFGRD96 108.0 165 50 -40 5.10 0.6484
The best solution is
WVFGRD96 86.0 165 50 -40 5.10 0.7007
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: