2014/03/17 08:32:36 -20.030 -70.706 10.2 5.3 Chile
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/03/17 08:32:36:0 -20.03 -70.71 10.2 5.3 Chile Stations used: C.GO01 C.GO02 CX.PB01 CX.PB04 CX.PB10 CX.PB11 GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 3.02e+23 dyne-cm Mw = 4.92 Z = 13 km Plane Strike Dip Rake NP1 225 75 -70 NP2 350 25 -142 Principal Axes: Axis Value Plunge Azimuth T 3.02e+23 27 299 N 0.00e+00 19 40 P -3.02e+23 56 160 Moment Tensor: (dyne-cm) Component Value Mxx -2.88e+22 Mxy -7.09e+22 Mxz 1.93e+23 Myy 1.71e+23 Myz -1.55e+23 Mzz -1.42e+23 #########----- #################----- ######################------ #########################--### ##########################---##### ########################-------##### #### ################----------##### ##### T #############--------------##### ##### ###########----------------##### ##################-------------------##### #################--------------------##### ###############----------------------##### #############------------------------##### ###########-------------------------#### ##########----------- -----------##### #######------------- P -----------#### #####-------------- ----------#### ###---------------------------#### #--------------------------### ------------------------#### -------------------### -------------# Global CMT Convention Moment Tensor: R T P -1.42e+23 1.93e+23 1.55e+23 1.93e+23 -2.88e+22 7.09e+22 1.55e+23 7.09e+22 1.71e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140317083236/index.html |
STK = 225 DIP = 75 RAKE = -70 MW = 4.92 HS = 13.0
The NDK file is 20140317083236.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/03/17 08:32:36:0 -20.03 -70.71 10.2 5.3 Chile Stations used: C.GO01 C.GO02 CX.PB01 CX.PB04 CX.PB10 CX.PB11 GT.LPAZ IU.LVC Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 3.02e+23 dyne-cm Mw = 4.92 Z = 13 km Plane Strike Dip Rake NP1 225 75 -70 NP2 350 25 -142 Principal Axes: Axis Value Plunge Azimuth T 3.02e+23 27 299 N 0.00e+00 19 40 P -3.02e+23 56 160 Moment Tensor: (dyne-cm) Component Value Mxx -2.88e+22 Mxy -7.09e+22 Mxz 1.93e+23 Myy 1.71e+23 Myz -1.55e+23 Mzz -1.42e+23 #########----- #################----- ######################------ #########################--### ##########################---##### ########################-------##### #### ################----------##### ##### T #############--------------##### ##### ###########----------------##### ##################-------------------##### #################--------------------##### ###############----------------------##### #############------------------------##### ###########-------------------------#### ##########----------- -----------##### #######------------- P -----------#### #####-------------- ----------#### ###---------------------------#### #--------------------------### ------------------------#### -------------------### -------------# Global CMT Convention Moment Tensor: R T P -1.42e+23 1.93e+23 1.55e+23 1.93e+23 -2.88e+22 7.09e+22 1.55e+23 7.09e+22 1.71e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140317083236/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 45 50 -95 4.55 0.3234 WVFGRD96 2.0 45 50 -95 4.69 0.4225 WVFGRD96 3.0 95 65 -35 4.68 0.3653 WVFGRD96 4.0 100 40 -5 4.68 0.3758 WVFGRD96 5.0 225 85 -80 4.73 0.4448 WVFGRD96 6.0 225 85 -75 4.74 0.5076 WVFGRD96 7.0 225 80 -75 4.75 0.5557 WVFGRD96 8.0 225 80 -80 4.84 0.5916 WVFGRD96 9.0 225 80 -75 4.86 0.6280 WVFGRD96 10.0 225 80 -75 4.87 0.6530 WVFGRD96 11.0 225 75 -75 4.89 0.6707 WVFGRD96 12.0 225 75 -70 4.90 0.6803 WVFGRD96 13.0 225 75 -70 4.92 0.6844 WVFGRD96 14.0 230 80 -65 4.94 0.6841 WVFGRD96 15.0 230 80 -65 4.95 0.6786 WVFGRD96 16.0 230 80 -65 4.96 0.6691 WVFGRD96 17.0 230 80 -65 4.98 0.6564 WVFGRD96 18.0 230 80 -65 4.99 0.6412 WVFGRD96 19.0 230 80 -65 5.00 0.6238 WVFGRD96 20.0 230 80 -65 5.01 0.6041 WVFGRD96 21.0 230 85 -65 5.03 0.5840 WVFGRD96 22.0 150 10 15 5.02 0.5647 WVFGRD96 23.0 150 10 15 5.03 0.5466 WVFGRD96 24.0 155 10 20 5.03 0.5266 WVFGRD96 25.0 155 10 20 5.04 0.5070 WVFGRD96 26.0 155 10 20 5.05 0.4859 WVFGRD96 27.0 155 10 20 5.06 0.4637 WVFGRD96 28.0 155 10 20 5.06 0.4412 WVFGRD96 29.0 150 15 15 5.07 0.4173
The best solution is
WVFGRD96 13.0 225 75 -70 4.92 0.6844
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: