2012/05/12 23:28:43 38.658 70.414 10.0 5.70 Tadjikistan
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2012/05/12 23:28:43:7 38.66 70.41 10.0 5.7 Tadjikistan Stations used: II.AAK II.NIL IU.KBL KR.KDJ KR.NRN Filtering commands used: hp c 0.015 n 3 lp c 0.033 n 3 Best Fitting Double Couple Mo = 3.16e+24 dyne-cm Mw = 5.60 Z = 25 km Plane Strike Dip Rake NP1 190 75 60 NP2 76 33 152 Principal Axes: Axis Value Plunge Azimuth T 3.16e+24 51 66 N 0.00e+00 29 198 P -3.16e+24 24 303 Moment Tensor: (dyne-cm) Component Value Mxx -5.64e+23 Mxy 1.67e+24 Mxz -8.83e+21 Myy -8.06e+23 Myz 2.41e+24 Mzz 1.37e+24 ----------#### -------------######### ---------------############# ---------------############### ----------------################## --- -----------################### ---- P ----------##################### ----- ---------########### ######### -----------------########### T ######### ------------------########### #########- -----------------#######################-- -----------------#######################-- -----------------######################--- ---------------######################--- #--------------####################----- #-------------##################------ ###----------################------- #####-------#############--------- ########--#######------------- #########------------------- #######--------------- ###----------- Global CMT Convention Moment Tensor: R T P 1.37e+24 -8.83e+21 -2.41e+24 -8.83e+21 -5.64e+23 -1.67e+24 -2.41e+24 -1.67e+24 -8.06e+23 Details of the solution is found at http://www.eas.slu.edu/Earthquake_Center/MECH.NA/20120512232843/index.html |
STK = 190 DIP = 75 RAKE = 60 MW = 5.60 HS = 25.0
The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2012/05/12 23:28:43:7 38.66 70.41 10.0 5.7 Tadjikistan Stations used: II.AAK II.NIL IU.KBL KR.KDJ KR.NRN Filtering commands used: hp c 0.015 n 3 lp c 0.033 n 3 Best Fitting Double Couple Mo = 3.16e+24 dyne-cm Mw = 5.60 Z = 25 km Plane Strike Dip Rake NP1 190 75 60 NP2 76 33 152 Principal Axes: Axis Value Plunge Azimuth T 3.16e+24 51 66 N 0.00e+00 29 198 P -3.16e+24 24 303 Moment Tensor: (dyne-cm) Component Value Mxx -5.64e+23 Mxy 1.67e+24 Mxz -8.83e+21 Myy -8.06e+23 Myz 2.41e+24 Mzz 1.37e+24 ----------#### -------------######### ---------------############# ---------------############### ----------------################## --- -----------################### ---- P ----------##################### ----- ---------########### ######### -----------------########### T ######### ------------------########### #########- -----------------#######################-- -----------------#######################-- -----------------######################--- ---------------######################--- #--------------####################----- #-------------##################------ ###----------################------- #####-------#############--------- ########--#######------------- #########------------------- #######--------------- ###----------- Global CMT Convention Moment Tensor: R T P 1.37e+24 -8.83e+21 -2.41e+24 -8.83e+21 -5.64e+23 -1.67e+24 -2.41e+24 -1.67e+24 -8.06e+23 Details of the solution is found at http://www.eas.slu.edu/Earthquake_Center/MECH.NA/20120512232843/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.015 n 3 lp c 0.033 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 265 75 -15 5.31 0.4343 WVFGRD96 2.0 265 70 -10 5.35 0.4434 WVFGRD96 3.0 265 50 0 5.41 0.4387 WVFGRD96 4.0 265 40 0 5.46 0.4367 WVFGRD96 5.0 265 35 0 5.49 0.4403 WVFGRD96 6.0 265 30 0 5.51 0.4477 WVFGRD96 7.0 265 25 -5 5.53 0.4569 WVFGRD96 8.0 260 20 -15 5.60 0.4668 WVFGRD96 9.0 250 15 -30 5.62 0.4858 WVFGRD96 10.0 240 15 -45 5.63 0.5048 WVFGRD96 11.0 195 80 80 5.62 0.5262 WVFGRD96 12.0 195 80 80 5.62 0.5445 WVFGRD96 13.0 195 80 80 5.61 0.5574 WVFGRD96 14.0 190 80 75 5.60 0.5726 WVFGRD96 15.0 190 80 75 5.60 0.5832 WVFGRD96 16.0 190 80 70 5.59 0.5935 WVFGRD96 17.0 190 80 70 5.59 0.6024 WVFGRD96 18.0 190 80 70 5.59 0.6095 WVFGRD96 19.0 195 75 70 5.60 0.6165 WVFGRD96 20.0 190 80 65 5.59 0.6212 WVFGRD96 21.0 190 75 65 5.60 0.6274 WVFGRD96 22.0 190 75 65 5.60 0.6309 WVFGRD96 23.0 190 75 60 5.60 0.6337 WVFGRD96 24.0 190 75 60 5.60 0.6371 WVFGRD96 25.0 190 75 60 5.60 0.6378 WVFGRD96 26.0 190 75 60 5.61 0.6372 WVFGRD96 27.0 190 75 60 5.61 0.6377 WVFGRD96 28.0 190 75 55 5.61 0.6357 WVFGRD96 29.0 190 75 55 5.61 0.6333 WVFGRD96 30.0 190 75 55 5.61 0.6316 WVFGRD96 31.0 185 75 50 5.61 0.6283 WVFGRD96 32.0 185 75 50 5.61 0.6256 WVFGRD96 33.0 185 75 50 5.62 0.6205 WVFGRD96 34.0 185 75 50 5.62 0.6154 WVFGRD96 35.0 185 75 50 5.62 0.6106 WVFGRD96 36.0 190 75 55 5.62 0.6045 WVFGRD96 37.0 190 75 55 5.62 0.5982 WVFGRD96 38.0 190 75 55 5.62 0.5920 WVFGRD96 39.0 190 75 55 5.62 0.5851 WVFGRD96 40.0 190 70 60 5.75 0.6044 WVFGRD96 41.0 190 70 60 5.76 0.5973 WVFGRD96 42.0 190 70 60 5.76 0.5898 WVFGRD96 43.0 190 70 60 5.76 0.5820 WVFGRD96 44.0 190 70 55 5.76 0.5743 WVFGRD96 45.0 190 70 55 5.77 0.5665 WVFGRD96 46.0 190 70 55 5.77 0.5586 WVFGRD96 47.0 190 70 55 5.77 0.5505 WVFGRD96 48.0 185 75 45 5.77 0.5424 WVFGRD96 49.0 185 75 45 5.77 0.5349 WVFGRD96 50.0 185 75 45 5.78 0.5273 WVFGRD96 51.0 185 75 45 5.78 0.5195 WVFGRD96 52.0 185 75 45 5.78 0.5117 WVFGRD96 53.0 185 75 45 5.79 0.5038 WVFGRD96 54.0 185 75 45 5.79 0.4959 WVFGRD96 55.0 185 75 45 5.79 0.4869 WVFGRD96 56.0 185 75 45 5.79 0.4790 WVFGRD96 57.0 185 75 40 5.80 0.4712 WVFGRD96 58.0 185 75 40 5.80 0.4636 WVFGRD96 59.0 185 75 40 5.80 0.4559 WVFGRD96 60.0 185 75 40 5.81 0.4482 WVFGRD96 61.0 185 75 40 5.81 0.4406 WVFGRD96 62.0 185 75 40 5.81 0.4330 WVFGRD96 63.0 185 75 40 5.81 0.4254 WVFGRD96 64.0 185 75 40 5.82 0.4179 WVFGRD96 65.0 185 75 40 5.82 0.4104 WVFGRD96 66.0 185 75 40 5.82 0.4019 WVFGRD96 67.0 185 75 40 5.82 0.3946 WVFGRD96 68.0 185 75 40 5.83 0.3873 WVFGRD96 69.0 185 75 40 5.83 0.3802 WVFGRD96 70.0 185 75 40 5.83 0.3730 WVFGRD96 71.0 185 75 40 5.83 0.3660 WVFGRD96 72.0 185 75 40 5.83 0.3590 WVFGRD96 73.0 185 75 40 5.84 0.3521 WVFGRD96 74.0 185 75 40 5.84 0.3453 WVFGRD96 75.0 185 75 40 5.84 0.3386 WVFGRD96 76.0 185 75 40 5.84 0.3320 WVFGRD96 77.0 185 75 40 5.84 0.3254 WVFGRD96 78.0 185 75 40 5.85 0.3189 WVFGRD96 79.0 185 75 40 5.85 0.3125 WVFGRD96 80.0 185 75 40 5.85 0.3061 WVFGRD96 81.0 185 75 45 5.85 0.2998 WVFGRD96 82.0 185 75 45 5.85 0.2937 WVFGRD96 83.0 185 75 45 5.85 0.2876 WVFGRD96 84.0 185 75 45 5.85 0.2816 WVFGRD96 85.0 185 75 45 5.86 0.2757 WVFGRD96 86.0 185 75 45 5.86 0.2699 WVFGRD96 87.0 185 75 45 5.86 0.2641 WVFGRD96 88.0 185 75 45 5.86 0.2585 WVFGRD96 89.0 185 75 45 5.86 0.2521 WVFGRD96 90.0 185 75 45 5.86 0.2466 WVFGRD96 91.0 185 75 45 5.86 0.2406 WVFGRD96 92.0 185 75 45 5.86 0.2352 WVFGRD96 93.0 185 75 45 5.87 0.2299 WVFGRD96 94.0 185 75 50 5.86 0.2247 WVFGRD96 95.0 185 75 50 5.87 0.2197 WVFGRD96 96.0 185 75 50 5.87 0.2147 WVFGRD96 97.0 185 75 50 5.87 0.2097 WVFGRD96 98.0 185 75 50 5.87 0.2048 WVFGRD96 99.0 185 75 50 5.87 0.2000
The best solution is
WVFGRD96 25.0 190 75 60 5.60 0.6378
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.015 n 3 lp c 0.033 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Sat May 12 18:29:30 MDT 2012