2007/08/24 07:45:22 40.5500 123.033 10.0 3.70
The SMU location could not fit the P-wave first motion on the Z and R components at station YLING. Interestingly the strongest arrival is the Transverse componet. In addition the waveform inversion required a set of positive time shifts. The preferred solution is from elocate and is given in detail in elocate.txt has an origin time about 2 seconds later than the SMU solution. Perhaps this is because of the use of the sharp S-wave arrivals.
As you can see from the plots YLING is not fit well - the solution at a close station depends upon azimuth very strongly. Fortunately the distance weighting used downweights YLING so that it does not affect the solution. The solution without YLING is
WVFGRD96 8.0 275 70 -25 3.81 0.7907
The SLU location is as follows:
2007/08/24 07:45:24 40.5300 123.064 18.0 3.70
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2007/08/24 07:45:24:2 40.53 123.06 18.0 3.7 Stations used: XG.HGOU XG.HQI XG.LJIA XG.MJD XG.WTANG XG.XDIAN XG.YLING Filtering commands used: hp c 0.05 n 3 lp c 0.50 n 3 Best Fitting Double Couple Mo = 5.89e+21 dyne-cm Mw = 3.78 Z = 8 km Plane Strike Dip Rake NP1 275 70 -25 NP2 14 67 -158 Principal Axes: Axis Value Plunge Azimuth T 5.89e+21 2 325 N 0.00e+00 58 59 P -5.89e+21 32 234 Moment Tensor: (dyne-cm) Component Value Mxx 2.46e+21 Mxy -4.80e+21 Mxz 1.74e+21 Myy -8.59e+20 Myz 1.98e+21 Mzz -1.60e+21 ############-- T ###############----- ## ################------- ######################-------- ########################---------- #########################----------- ##########################------------ ###########################------------- #######-----------------###------------- ##--------------------------#####--------- ---------------------------###########---- ---------------------------##############- --------------------------################ -------------------------############### ------- --------------################ ------ P -------------################ ----- -------------############### -------------------############### ----------------############## -------------############### ---------############# ---########### Global CMT Convention Moment Tensor: R T P -1.60e+21 1.74e+21 -1.98e+21 1.74e+21 2.46e+21 4.80e+21 -1.98e+21 4.80e+21 -8.59e+20 Details of the solution is found at http://www.eas.slu.edu/Earthquake_Center/MECH.NA/20070824074524/index.html |
STK = 275 DIP = 70 RAKE = -25 MW = 3.78 HS = 8.0
The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2007/08/24 07:45:24:2 40.53 123.06 18.0 3.7 Stations used: XG.HGOU XG.HQI XG.LJIA XG.MJD XG.WTANG XG.XDIAN XG.YLING Filtering commands used: hp c 0.05 n 3 lp c 0.50 n 3 Best Fitting Double Couple Mo = 5.89e+21 dyne-cm Mw = 3.78 Z = 8 km Plane Strike Dip Rake NP1 275 70 -25 NP2 14 67 -158 Principal Axes: Axis Value Plunge Azimuth T 5.89e+21 2 325 N 0.00e+00 58 59 P -5.89e+21 32 234 Moment Tensor: (dyne-cm) Component Value Mxx 2.46e+21 Mxy -4.80e+21 Mxz 1.74e+21 Myy -8.59e+20 Myz 1.98e+21 Mzz -1.60e+21 ############-- T ###############----- ## ################------- ######################-------- ########################---------- #########################----------- ##########################------------ ###########################------------- #######-----------------###------------- ##--------------------------#####--------- ---------------------------###########---- ---------------------------##############- --------------------------################ -------------------------############### ------- --------------################ ------ P -------------################ ----- -------------############### -------------------############### ----------------############## -------------############### ---------############# ---########### Global CMT Convention Moment Tensor: R T P -1.60e+21 1.74e+21 -1.98e+21 1.74e+21 2.46e+21 4.80e+21 -1.98e+21 4.80e+21 -8.59e+20 Details of the solution is found at http://www.eas.slu.edu/Earthquake_Center/MECH.NA/20070824074524/index.html |
This is a plot of observed first motions together with the waveform grid search nodal planes: |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.05 n 3 lp c 0.50 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 10 90 -20 3.46 0.4556 WVFGRD96 1.0 275 65 -30 3.55 0.4849 WVFGRD96 2.0 105 75 20 3.58 0.5152 WVFGRD96 3.0 280 75 -15 3.63 0.5286 WVFGRD96 4.0 280 75 -15 3.67 0.5405 WVFGRD96 5.0 280 70 -15 3.70 0.5662 WVFGRD96 6.0 280 70 -20 3.73 0.5904 WVFGRD96 7.0 275 65 -25 3.76 0.6185 WVFGRD96 8.0 275 70 -25 3.78 0.6272 WVFGRD96 9.0 275 70 -25 3.80 0.6166 WVFGRD96 10.0 275 70 -30 3.81 0.5943 WVFGRD96 11.0 275 70 -30 3.83 0.5794 WVFGRD96 12.0 280 80 -20 3.84 0.5562 WVFGRD96 13.0 280 80 -20 3.85 0.5399 WVFGRD96 14.0 280 80 -15 3.86 0.5309 WVFGRD96 15.0 280 80 -15 3.87 0.4979 WVFGRD96 16.0 105 90 10 3.89 0.5119 WVFGRD96 17.0 105 90 10 3.90 0.5140 WVFGRD96 18.0 285 90 -10 3.91 0.5023 WVFGRD96 19.0 285 90 -10 3.93 0.5203 WVFGRD96 20.0 105 90 15 3.94 0.5239 WVFGRD96 21.0 105 90 10 3.97 0.5239 WVFGRD96 22.0 105 90 15 3.96 0.5052 WVFGRD96 23.0 285 90 -10 3.99 0.5117 WVFGRD96 24.0 105 85 15 4.00 0.5182 WVFGRD96 25.0 105 90 10 4.02 0.5196 WVFGRD96 26.0 105 90 10 4.03 0.5135 WVFGRD96 27.0 105 75 25 4.02 0.4937 WVFGRD96 28.0 105 75 25 4.03 0.4962 WVFGRD96 29.0 105 75 20 4.05 0.4957
The best solution is
WVFGRD96 8.0 275 70 -25 3.78 0.6272
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted componnet is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was
hp c 0.05 n 3 lp c 0.50 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The CUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Thu May 20 22:53:47 CDT 2010