2014/02/26 00:00:07 -30.679 121.187 0.0 4.6 Australia
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/02/26 00:00:07:0 -30.68 121.19 0.0 4.6 Australia Stations used: AU.BLDU AU.FORT AU.KMBL AU.MEEK AU.MORW AU.MUN IU.NWAO Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 4.07e+22 dyne-cm Mw = 4.34 Z = 1 km Plane Strike Dip Rake NP1 221 64 114 NP2 355 35 50 Principal Axes: Axis Value Plunge Azimuth T 4.07e+22 63 170 N 0.00e+00 22 30 P -4.07e+22 16 293 Moment Tensor: (dyne-cm) Component Value Mxx 2.39e+21 Mxy 1.22e+22 Mxz -2.04e+22 Myy -3.17e+22 Myz 1.25e+22 Mzz 2.93e+22 ---------##### ----------------###### ---------------------######- ----------------------##------ ---------------------######------- -------------------##########------- - --------------#############------- -- P ------------###############-------- -- ----------##################------- ---------------###################-------- -------------######################------- ------------#######################------- -----------########################------- ---------########### ##########------- --------############ T ##########------- -------############ #########------- -----#########################------ ----########################------ -########################----- ######################------ ##################---- ###########--- Global CMT Convention Moment Tensor: R T P 2.93e+22 -2.04e+22 -1.25e+22 -2.04e+22 2.39e+21 -1.22e+22 -1.25e+22 -1.22e+22 -3.17e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140226000007/index.html |
STK = -5 DIP = 35 RAKE = 50 MW = 4.34 HS = 1.0
The NDK file is 20140226000007.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/02/26 00:00:07:0 -30.68 121.19 0.0 4.6 Australia Stations used: AU.BLDU AU.FORT AU.KMBL AU.MEEK AU.MORW AU.MUN IU.NWAO Filtering commands used: cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 4.07e+22 dyne-cm Mw = 4.34 Z = 1 km Plane Strike Dip Rake NP1 221 64 114 NP2 355 35 50 Principal Axes: Axis Value Plunge Azimuth T 4.07e+22 63 170 N 0.00e+00 22 30 P -4.07e+22 16 293 Moment Tensor: (dyne-cm) Component Value Mxx 2.39e+21 Mxy 1.22e+22 Mxz -2.04e+22 Myy -3.17e+22 Myz 1.25e+22 Mzz 2.93e+22 ---------##### ----------------###### ---------------------######- ----------------------##------ ---------------------######------- -------------------##########------- - --------------#############------- -- P ------------###############-------- -- ----------##################------- ---------------###################-------- -------------######################------- ------------#######################------- -----------########################------- ---------########### ##########------- --------############ T ##########------- -------############ #########------- -----#########################------ ----########################------ -########################----- ######################------ ##################---- ###########--- Global CMT Convention Moment Tensor: R T P 2.93e+22 -2.04e+22 -1.25e+22 -2.04e+22 2.39e+21 -1.22e+22 -1.25e+22 -1.22e+22 -3.17e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140226000007/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 -5 35 50 4.34 0.8440 WVFGRD96 2.0 180 70 70 4.43 0.8258 WVFGRD96 3.0 190 65 80 4.44 0.7786 WVFGRD96 4.0 180 25 60 4.40 0.7587 WVFGRD96 5.0 -5 80 65 4.46 0.7493 WVFGRD96 6.0 170 90 -55 4.45 0.7377 WVFGRD96 7.0 165 80 -45 4.45 0.7314 WVFGRD96 8.0 165 80 -45 4.45 0.7344 WVFGRD96 9.0 160 70 -40 4.43 0.7363 WVFGRD96 10.0 160 70 -45 4.47 0.7251 WVFGRD96 11.0 160 70 -45 4.47 0.7276 WVFGRD96 12.0 160 65 -40 4.47 0.7276 WVFGRD96 13.0 160 65 -40 4.47 0.7257 WVFGRD96 14.0 155 60 -40 4.46 0.7225 WVFGRD96 15.0 155 60 -40 4.46 0.7194 WVFGRD96 16.0 155 60 -40 4.47 0.7149 WVFGRD96 17.0 155 60 -40 4.47 0.7093 WVFGRD96 18.0 155 60 -40 4.48 0.7034 WVFGRD96 19.0 155 60 -40 4.48 0.6980 WVFGRD96 20.0 155 60 -45 4.52 0.6856 WVFGRD96 21.0 155 60 -45 4.52 0.6779 WVFGRD96 22.0 155 60 -45 4.53 0.6692 WVFGRD96 23.0 145 55 -55 4.53 0.6602 WVFGRD96 24.0 145 55 -55 4.54 0.6515 WVFGRD96 25.0 145 55 -55 4.54 0.6419 WVFGRD96 26.0 145 55 -55 4.55 0.6316 WVFGRD96 27.0 130 50 -70 4.54 0.6212 WVFGRD96 28.0 130 50 -70 4.55 0.6116 WVFGRD96 29.0 130 50 -70 4.55 0.6018
The best solution is
WVFGRD96 1.0 -5 35 50 4.34 0.8440
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -30 a 180 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The CUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: