2013/06/09 14:22:12 -25.967 131.976 1.1 5.8 Australia
The Earthquakes@Geoscience Australia solution is http://www.ga.gov.au/earthquakes/getQuakeTechController.do?orid=772311&quakeId=3373820
Magnitude Location (uncertainty) Mwp: Not available Latitude: -25.857 (+/- 0.6482km) Mb: Not available Longitude: 131.842 (+/- 0.5274km) Ms: (Not available) Depth: 0 km (+/- 3.6168km) Md: Not available ML: 5.7 (Preferred) Quality indicators Solution status Number of stations used: 27 (of 55 possible) Last updated: 10 June 2013 @ 12:41:12 (AEST) Number of phase used: 27 (of 67 possible) Finalised: No Gap angles: 60° Source: AUST RMS residual: 5.19 seconds
USGS Felt map for this earthquake USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2013/06/09 14:22:12:0 -25.97 131.98 1.1 5.8 Australia Stations used: AU.BBOO AU.FORT AU.HTT AU.KMBL AU.KNRA AU.QIS AU.STKA AU.WB2 AU.WC3 AU.WRKA II.WRAB Filtering commands used: hp c 0.01 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 1.76e+24 dyne-cm Mw = 5.43 Z = 2 km Plane Strike Dip Rake NP1 280 60 55 NP2 154 45 135 Principal Axes: Axis Value Plunge Azimuth T 1.76e+24 59 138 N 0.00e+00 30 299 P -1.76e+24 9 34 Moment Tensor: (dyne-cm) Component Value Mxx -9.11e+23 Mxy -1.03e+24 Mxz -7.97e+23 Myy -3.36e+23 Myz 3.71e+23 Mzz 1.25e+24 -------------- #------------------- ###-------------------- P -- ###--------------------- --- #####----------------------------- #####------------------------------- ######-------------------------------- #####--###################-------------- #------########################--------- --------###########################------- ---------############################----- ---------##############################--- ----------###############################- ----------############## ############# -----------############# T ############# -----------############ ############ -----------######################### ------------###################### ------------################## -------------############### --------------######## -------------- Global CMT Convention Moment Tensor: R T P 1.25e+24 -7.97e+23 -3.71e+23 -7.97e+23 -9.11e+23 1.03e+24 -3.71e+23 1.03e+24 -3.36e+23 Details of the solution is found at http://www.eas.slu.edu/Earthquake_Center/MECH.NA/20130609142212/index.html |
STK = 280 DIP = 60 RAKE = 55 MW = 5.43 HS = 2.0
There are problems in using the data from some stations. See the section on quality control at the bottom of this page. After a detailed QC analysis, the orientation of the horizontals of the station QIS were modified so that stations three component data set could be used.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2013/06/09 14:22:12:0 -25.97 131.98 1.1 5.8 Australia Stations used: AU.BBOO AU.FORT AU.HTT AU.KMBL AU.KNRA AU.QIS AU.STKA AU.WB2 AU.WC3 AU.WRKA II.WRAB Filtering commands used: hp c 0.01 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 1.76e+24 dyne-cm Mw = 5.43 Z = 2 km Plane Strike Dip Rake NP1 280 60 55 NP2 154 45 135 Principal Axes: Axis Value Plunge Azimuth T 1.76e+24 59 138 N 0.00e+00 30 299 P -1.76e+24 9 34 Moment Tensor: (dyne-cm) Component Value Mxx -9.11e+23 Mxy -1.03e+24 Mxz -7.97e+23 Myy -3.36e+23 Myz 3.71e+23 Mzz 1.25e+24 -------------- #------------------- ###-------------------- P -- ###--------------------- --- #####----------------------------- #####------------------------------- ######-------------------------------- #####--###################-------------- #------########################--------- --------###########################------- ---------############################----- ---------##############################--- ----------###############################- ----------############## ############# -----------############# T ############# -----------############ ############ -----------######################### ------------###################### ------------################## -------------############### --------------######## -------------- Global CMT Convention Moment Tensor: R T P 1.25e+24 -7.97e+23 -3.71e+23 -7.97e+23 -9.11e+23 1.03e+24 -3.71e+23 1.03e+24 -3.36e+23 Details of the solution is found at http://www.eas.slu.edu/Earthquake_Center/MECH.NA/20130609142212/index.html |
us usc000hjry-neic-mwb Type Mwb Moment 5.40e+17 N-m Magnitude 5.8 Percent DC 78% Depth 1.0 km Author neic Updated 2013-06-09 18:06:09 UTC Principal Axes Axis Value Plunge Azimuth T 5.102 50 250 N 0.552 8 150 P -5.654 39 53 Nodal Planes Plane Strike Dip Rake NP1 331 85 98 NP2 94 10 34 |
June 9, 2013, NORTHERN TERRITORY, AUSTRALIA, MW=5.4 Howard Koss Meredith Nettles CENTROID-MOMENT-TENSOR SOLUTION GCMT EVENT: C201306091422A DATA: II IU LD DK CU MN IC G GE L.P.BODY WAVES: 96S, 162C, T= 40 MANTLE WAVES: 23S, 23C, T=125 SURFACE WAVES: 119S, 226C, T= 50 TIMESTAMP: Q-20130609214824 CENTROID LOCATION: ORIGIN TIME: 14:22:15.1 0.1 LAT:25.96S 0.01;LON:132.11E 0.01 DEP: 12.0 FIX;TRIANG HDUR: 1.3 MOMENT TENSOR: SCALE 10**24 D-CM RR= 1.120 0.020; TT=-0.844 0.019 PP=-0.279 0.022; RT=-0.017 0.047 RP= 0.133 0.053; TP= 1.720 0.018 PRINCIPAL AXES: 1.(T) VAL= 1.247;PLG=36;AZM=309 2.(N) 1.057; 54; 133 3.(P) -2.307; 2; 40 BEST DBLE.COUPLE:M0= 1.78*10**24 NP1: STRIKE= 91;DIP=64;SLIP= 26 NP2: STRIKE=349;DIP=67;SLIP= 152 ###-------- #########---------- ############--------- P ###############-------- - ##### #########------------ ###### T ##########------------ ###### ##########------------ #####################------------ #####################------------ -####################-----------# ----##################-------#### ---------############--######## ---------------------########## --------------------######### -------------------######## ----------------####### --------------##### ---------## |
USGS research CMT: maintained and developed by Jascha Polet at Cal Poly Pomona This is a research system and solutions are *not* official USGS earthquake magnitudes AUTOMATIC solution, not reviewed by a seismologist, beta version 12/21/12 More details on this rCMT at http://neic.cr.usgs.gov/beta/rcmt/events/130609142213.C000HJRY usr/passwd : rcmt/rcmt Event only available after completion bootstrapping - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - General region : C000HJRY NORTHERN TERRITORY, AUSTR surface waves (3.0,3.5,7,7.5 mHz) Stations used : CASY DGAR KIP MAJO PET PMG SNZO TAU TLY YSS Origin time: 2013 160 14 22 13 Original location (lat,lon,depth) : -26.0 132.0 4 Moment tensor (x1.e26 dyncm) : Mrr : 0.007716 Mtt : -0.006266 Mff : -0.001449 Mrt : -0.057241 Mrf : 0.014628 Mtf : 0.013805 T-axis: moment= 0.058 plunge= 48.766 azimuth= 182.775 N-axis: moment= 0.005 plunge= 10.366 azimuth= 284.822 P-axis: moment= -0.063 plunge= 39.353 azimuth= 23.449 best double couple: Mo= 0.061(x1.e26 dyncm) Mw=5.8 tau= 2.2 nodal planes (strike/dip/slip): 169.52/ 11.44/155.14 283.94/ 85.22/ 79.60 Centroid location : -25.847 132.889 10.000 Centroid time : 3.882 Variance reduction (%) : 3.8 *********** ****o **** ***o *** **oo ** **o P ** *oo * *oo * **o-- ** *oooooooooo * **oo--------ooooooooo ** **o----------------+ooooooo ** **oo-----------------------oooooo ** *-o-----------------------------oooo* **oo-------------------------------** *-o-------------------------------* *-oo------------T---------------* **oo-------------------------** **ooo----------------------** ***ooo----------------*** ****ooo--------**** *********** 0- 30- 60- 90- 120- 150- 180- 210- 240- 270- 300- 330- z-comp: 0 2 0 1 1 3 1 0 1 0 0 1 r-comp: 0 1 0 1 1 3 1 0 0 0 0 1 t-comp: 0 1 0 1 1 3 1 0 0 0 0 1 Total number of traces used = 26 number of runs = 17 starttime = Sun Jun 9 08:39:23 MDT 2013 Solution produced by inversion of all available channels - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - researchCMT mailing list You cannot post to this mailing list. It is for distribution only. Questions comments (un)subscribe? Ask Jascha, jpolet@csupomona.edu |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.01 n 3 lp c 0.05 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 95 60 40 5.36 0.7759 WVFGRD96 1.0 100 60 50 5.38 0.7868 WVFGRD96 2.0 280 60 55 5.43 0.7896 WVFGRD96 3.0 115 55 75 5.48 0.7633 WVFGRD96 4.0 115 60 80 5.52 0.7175 WVFGRD96 5.0 300 65 80 5.51 0.6961 WVFGRD96 6.0 300 65 80 5.50 0.6750 WVFGRD96 7.0 300 65 80 5.49 0.6552 WVFGRD96 8.0 295 70 75 5.46 0.6405 WVFGRD96 9.0 75 70 -35 5.44 0.6472 WVFGRD96 10.0 285 75 65 5.45 0.6374 WVFGRD96 11.0 75 70 -35 5.46 0.6477 WVFGRD96 12.0 75 70 -40 5.46 0.6519 WVFGRD96 13.0 80 75 -40 5.45 0.6567 WVFGRD96 14.0 80 75 -40 5.45 0.6602 WVFGRD96 15.0 80 75 -40 5.45 0.6624 WVFGRD96 16.0 80 75 -40 5.46 0.6632 WVFGRD96 17.0 80 75 -40 5.46 0.6634 WVFGRD96 18.0 80 75 -40 5.46 0.6635 WVFGRD96 19.0 85 80 -40 5.46 0.6638 WVFGRD96 20.0 110 85 -60 5.46 0.6603 WVFGRD96 21.0 110 85 -60 5.46 0.6612 WVFGRD96 22.0 110 85 -60 5.47 0.6612 WVFGRD96 23.0 110 85 -60 5.47 0.6614 WVFGRD96 24.0 110 85 -60 5.48 0.6599 WVFGRD96 25.0 110 85 -60 5.48 0.6577 WVFGRD96 26.0 115 85 -60 5.49 0.6561 WVFGRD96 27.0 115 85 -60 5.49 0.6530 WVFGRD96 28.0 115 85 -60 5.49 0.6493 WVFGRD96 29.0 115 85 -60 5.50 0.6461
The best solution is
WVFGRD96 2.0 280 60 55 5.43 0.7896
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.01 n 3 lp c 0.05 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the IRIS stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following notes are made about station recordings. I processed the traces in the same manner as above, e.g., in the0.01 - 0.05 Hz band use the Sac commands given above.