2012/06/08 11:31:05 -30.773 150.540 17.0 4.30 NSW
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2012/06/08 11:31:05:0 -30.77 150.54 17.0 4.3 NSW Stations used: AU.ARMA AU.EIDS AU.STKA Filtering commands used: hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.40e+22 dyne-cm Mw = 4.03 Z = 9 km Plane Strike Dip Rake NP1 164 65 88 NP2 350 25 95 Principal Axes: Axis Value Plunge Azimuth T 1.40e+22 70 70 N 0.00e+00 2 165 P -1.40e+22 20 256 Moment Tensor: (dyne-cm) Component Value Mxx -4.97e+20 Mxy -2.31e+21 Mxz 2.64e+21 Myy -1.02e+22 Myz 8.61e+21 Mzz 1.07e+22 -########----- ----#############----- -------###############------ --------#################----- ---------####################----- ----------#####################----- -----------######################----- ------------#######################----- -------------######################----- --------------######## ############----- --------------######## T ############----- ---------------####### ############----- --- ---------######################----- -- P ----------#####################---- -- -----------###################----- ---------------###################---- ---------------#################---- ---------------###############---- --------------#############--- ---------------#########---- -------------######--- ------------#- Global CMT Convention Moment Tensor: R T P 1.07e+22 2.64e+21 -8.61e+21 2.64e+21 -4.97e+20 2.31e+21 -8.61e+21 2.31e+21 -1.02e+22 Details of the solution is found at http://www.eas.slu.edu/Earthquake_Center/MECH.NA/20120608113105/index.html |
STK = 350 DIP = 25 RAKE = 95 MW = 4.03 HS = 9.0
The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2012/06/08 11:31:05:0 -30.77 150.54 17.0 4.3 NSW Stations used: AU.ARMA AU.EIDS AU.STKA Filtering commands used: hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.40e+22 dyne-cm Mw = 4.03 Z = 9 km Plane Strike Dip Rake NP1 164 65 88 NP2 350 25 95 Principal Axes: Axis Value Plunge Azimuth T 1.40e+22 70 70 N 0.00e+00 2 165 P -1.40e+22 20 256 Moment Tensor: (dyne-cm) Component Value Mxx -4.97e+20 Mxy -2.31e+21 Mxz 2.64e+21 Myy -1.02e+22 Myz 8.61e+21 Mzz 1.07e+22 -########----- ----#############----- -------###############------ --------#################----- ---------####################----- ----------#####################----- -----------######################----- ------------#######################----- -------------######################----- --------------######## ############----- --------------######## T ############----- ---------------####### ############----- --- ---------######################----- -- P ----------#####################---- -- -----------###################----- ---------------###################---- ---------------#################---- ---------------###############---- --------------#############--- ---------------#########---- -------------######--- ------------#- Global CMT Convention Moment Tensor: R T P 1.07e+22 2.64e+21 -8.61e+21 2.64e+21 -4.97e+20 2.31e+21 -8.61e+21 2.31e+21 -1.02e+22 Details of the solution is found at http://www.eas.slu.edu/Earthquake_Center/MECH.NA/20120608113105/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 125 55 15 3.87 0.4114 WVFGRD96 1.0 120 75 10 3.90 0.4137 WVFGRD96 2.0 135 90 85 4.16 0.4722 WVFGRD96 3.0 150 85 85 4.06 0.5469 WVFGRD96 4.0 165 80 85 4.03 0.5965 WVFGRD96 5.0 160 80 85 4.01 0.6395 WVFGRD96 6.0 160 75 85 4.01 0.6626 WVFGRD96 7.0 355 20 100 4.02 0.6908 WVFGRD96 8.0 160 65 85 4.04 0.7072 WVFGRD96 9.0 350 25 95 4.03 0.7163 WVFGRD96 10.0 350 25 95 4.05 0.7156 WVFGRD96 11.0 350 30 95 4.07 0.7067 WVFGRD96 12.0 350 30 95 4.06 0.6941 WVFGRD96 13.0 350 30 95 4.05 0.6771 WVFGRD96 14.0 170 60 90 4.04 0.6557 WVFGRD96 15.0 350 30 95 4.03 0.6342 WVFGRD96 16.0 165 60 85 4.03 0.6089 WVFGRD96 17.0 175 60 95 4.03 0.5862 WVFGRD96 18.0 175 60 95 4.03 0.5606 WVFGRD96 19.0 350 30 90 4.02 0.5345 WVFGRD96 20.0 350 30 90 4.04 0.5152 WVFGRD96 21.0 170 60 90 4.04 0.4906 WVFGRD96 22.0 170 60 90 4.03 0.4651 WVFGRD96 23.0 350 30 90 4.03 0.4393 WVFGRD96 24.0 355 30 100 4.02 0.4144 WVFGRD96 25.0 170 60 90 4.02 0.3900 WVFGRD96 26.0 165 60 85 4.01 0.3669 WVFGRD96 27.0 360 30 105 4.01 0.3446 WVFGRD96 28.0 175 65 90 4.00 0.3225 WVFGRD96 29.0 185 65 100 4.01 0.3014
The best solution is
WVFGRD96 9.0 350 25 95 4.03 0.7163
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The CUS models used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Fri Jun 8 08:07:55 MDT 2012