2009/01/31 08:47:03 30.23 117.78 2.1 4.6 Beacon, WA, Australia
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2009/01/31 08:47:03:0 30.23 117.78 2.1 4.6 Beacon, WA, Australia Stations used: AU.BLDU AU.KMBL AU.MEEK AU.MORW Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 5.89e+21 dyne-cm Mw = 3.78 Z = 0 km Plane Strike Dip Rake NP1 325 55 55 NP2 196 48 129 Principal Axes: Axis Value Plunge Azimuth T 5.89e+21 62 176 N 0.00e+00 28 347 P -5.89e+21 4 79 Moment Tensor: (dyne-cm) Component Value Mxx 1.11e+21 Mxy -1.18e+21 Mxz -2.53e+21 Myy -5.64e+21 Myz -2.40e+20 Mzz 4.53e+21 ###########--- ###########----------- --------####---------------- -----------##----------------- -----------#######---------------- -----------##########--------------- -----------#############-------------- -----------###############------------ ----------##################---------- P -----------###################--------- ----------#####################----------- ----------######################---------- ----------######################---------- ---------########## ##########-------- ---------########## T ##########-------- --------########## ###########------ -------########################----- -------#######################---- -----#######################-- -----#####################-- ---################### -############# Global CMT Convention Moment Tensor: R T P 4.53e+21 -2.53e+21 2.40e+20 -2.53e+21 1.11e+21 1.18e+21 2.40e+20 1.18e+21 -5.64e+21 Details of the solution is found at http://www.eas.slu.edu/Earthquake_Center/MECH.NA/20090131084703/index.html |
STK = 325 DIP = 55 RAKE = 55 MW = 3.78 HS = 0.5
The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2009/01/31 08:47:03:0 30.23 117.78 2.1 4.6 Beacon, WA, Australia Stations used: AU.BLDU AU.KMBL AU.MEEK AU.MORW Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 5.89e+21 dyne-cm Mw = 3.78 Z = 0 km Plane Strike Dip Rake NP1 325 55 55 NP2 196 48 129 Principal Axes: Axis Value Plunge Azimuth T 5.89e+21 62 176 N 0.00e+00 28 347 P -5.89e+21 4 79 Moment Tensor: (dyne-cm) Component Value Mxx 1.11e+21 Mxy -1.18e+21 Mxz -2.53e+21 Myy -5.64e+21 Myz -2.40e+20 Mzz 4.53e+21 ###########--- ###########----------- --------####---------------- -----------##----------------- -----------#######---------------- -----------##########--------------- -----------#############-------------- -----------###############------------ ----------##################---------- P -----------###################--------- ----------#####################----------- ----------######################---------- ----------######################---------- ---------########## ##########-------- ---------########## T ##########-------- --------########## ###########------ -------########################----- -------#######################---- -----#######################-- -----#####################-- ---################### -############# Global CMT Convention Moment Tensor: R T P 4.53e+21 -2.53e+21 2.40e+20 -2.53e+21 1.11e+21 1.18e+21 2.40e+20 1.18e+21 -5.64e+21 Details of the solution is found at http://www.eas.slu.edu/Earthquake_Center/MECH.NA/20090131084703/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 325 55 55 3.78 0.6584 WVFGRD96 1.0 335 65 75 3.87 0.6521 WVFGRD96 2.0 150 65 70 3.91 0.6178 WVFGRD96 3.0 160 65 80 3.93 0.5778 WVFGRD96 4.0 160 65 80 3.92 0.5193 WVFGRD96 5.0 335 85 70 3.86 0.5106 WVFGRD96 6.0 335 85 70 3.85 0.5414 WVFGRD96 7.0 145 85 -70 3.85 0.5619 WVFGRD96 8.0 140 80 -70 3.85 0.5772 WVFGRD96 9.0 140 80 -70 3.85 0.5890 WVFGRD96 10.0 140 75 -75 3.89 0.5955 WVFGRD96 11.0 140 75 -75 3.89 0.6030 WVFGRD96 12.0 135 70 -75 3.91 0.6075 WVFGRD96 13.0 135 70 -80 3.91 0.6090 WVFGRD96 14.0 135 70 -80 3.92 0.6096 WVFGRD96 15.0 135 70 -80 3.92 0.6076 WVFGRD96 16.0 135 65 -80 3.94 0.6042 WVFGRD96 17.0 135 65 -80 3.94 0.6006 WVFGRD96 18.0 135 65 -85 3.95 0.5968 WVFGRD96 19.0 135 65 -85 3.96 0.5910 WVFGRD96 20.0 310 25 -95 4.00 0.5801 WVFGRD96 21.0 135 60 -90 4.01 0.5688 WVFGRD96 22.0 320 35 -90 4.01 0.5585 WVFGRD96 23.0 140 50 -90 4.02 0.5493 WVFGRD96 24.0 135 50 -95 4.02 0.5424 WVFGRD96 25.0 325 45 -85 4.02 0.5352 WVFGRD96 26.0 325 70 65 4.00 0.5256 WVFGRD96 27.0 325 70 65 4.01 0.5208 WVFGRD96 28.0 325 70 65 4.02 0.5142 WVFGRD96 29.0 130 20 90 4.05 0.5056
The best solution is
WVFGRD96 0.5 325 55 55 3.78 0.6584
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted componnet is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The CUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Thu Jul 9 11:28:07 CDT 2009