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SEISMOLOGICAL - INSTRUMENTATION
Part I

Theory of the Seismometer

and Direct Recofding'Seismograph

1. .The fundamental problem of seismometry

The purpose of this course is to present the techniques used in record-
ing ground vibratioms. The vibrations to be recorded are encountered in the
study of earthquakes, microseisms, explosion-generated waves (prospecting
seismology, nuclear test detection, quarry and mine blasting), and noise
generated by industrial operations (machinery, etc.). The theory and
design of the instruments, their installation, adjustment,. and calibration
will be considered. The emphasis will be placed on fundamertal principles
rather than on some -of the exotic techniques that have been developed in.
modern instrumentation practice. Once. the fundamentals are understood, ‘the
applications of the most recent technological advances to the problem are
readily grasped.

The problem may be broken down into two parts: detection of the ground
motion and recording. The detector is a device that responds to the motion
of the ground and produces a signal suitable for recording. This signal
contains the information about the ground motion (amplitude, waveform, etc.)
that the seismologist wishes to study. The recorder is a device that
accepts the signal and preserves the information contained in it in a per-
manent form, so that it is available for subsequent analysis and interpre-
tation. The seismic recorder always includes a means of marking the time
of arrival of the events, either.absolute time, as in observatory instru- -
ments, or time relative to the occurrence of the seismic event, as in pros-.
pecting instruments.

Before going into detail concerning the solution of the problem, it is
appropriate to comsider briefly the properties of the motion to be measured
‘A complete discussion of this question involves the. generation and propaga-
tion of seismic waves, and is covered in other places., Here all that is
needed is enough insight to brovide a basis for the selection of a suitable
instrument for the particular se1smolog1ca1 problem under consideration,
and to ‘indicate the scope of the instrumentation problem. Ground motion is
described in the terminology of vibration analysis, and the.definitions of
a few basic terms will be useful.

Definitions:
a) Vibration is the motion of a material body under the action of
fiuctuating forces. The forces may change with time in direction or
in magnitude and direction. Oscillation is often used as a synonym
for vibration, but has the connotation of back-and-forth motion about
a rest position, - All oscillations are vibrations, but not all vibra-
tions are oscillatory. )
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b) Periodic motion is motion which is repeated exactly during
successive equal time intervals, True periodic motion has no begin-
ning or end. Occasionally the notionm of periodicity is extended
(inexactly but usefully) to include motions which pass through the
rest position of the oscillating body at. equal time intervals, even
though the motion is not repetitive.
¢) Period of a periodic motion is the shortest increment of time at
which the motion repeats itself,
d) Czcle is the complete sequence of positions that a body in peri-
odic motion occupies during one period.
e) Frequency is the number of cycles completed in ‘a un1t time in a
periodic motion. The frequency is the reciprocal of the period.
f) Amplitude of a vibration is the largest value of the displacement .
during the motion., This term is usually, but not necessarily, used
_in comnection with periodic, or more particularly, sinusoidal, motion,
g) Number of degrees of freedom of a mechanical system is the number
of independent coordinates required to completely describe the posi-
tion of the parts of the system at all times.

The ground motioms encountered in seismological observatioms are
almost never periodic, although they are sometimes approximately.so.
Nevertheless, it is customary to speak of the period or frequency of ground
motion. The implication is that the signal may be approximated by a short
section of a periodic motion, or, from anothérvviewpoint, if the spectrum
of the signal is calculated, most of the energy will be found in the
neighborhood of a predominant frequency.

The characteristics of ground motions that are encountered in the

'entlre field of seismology are approximately as follows: frequencies from
- about 100 cps (or even higher) to about 0.00025 cps (1 cycle per hour);

amplitudes of the order of a few millimicrons to a few millimeters (rarely
a few centimeters in the case of .the surface waves from the largest earth-
quakes); -and direction of the ground motion is completely arbitrary. Thus’
we need instruments capable of covering approximately six decades in ‘
frequency, end with a dynamic range of some 120 db. No single instrument
has been developed that can cover this entire range, and we resort to
several instruments with more limited ranges to achieve the necessary
flexibility.

A complete description of the motion of the earth’'s sucface as a
seismic wave impinges om it requires the specification of translatioms
along three non-coplanar directions, and the speC1f1cat10n of rotations
about axes in these directions. As demonstrated by Wiechert im 1903, the
rotations associated with a seismic wave are very small quantities compared
to the translations (proportiomal to the difference of the space deriva-
tives of the displacements in the directions normal to the displacements).
Therefore, seismic instruments are designed to measure the displacements
or translations in three orthogonal directions and the rotations are
neglected. In recemt years several attempts have been made to build
rotation-recording instruments, but no success has been reported.

. The measurement of motion is one of the oldest problems in experi-
mental physics. Why, then, does the measurement of ground motion present
a special problem? -The reason is that motion must always be measured with
respect to some frame of reference; motion only has meaning with respect
to some reference. In ordinary laboratory measurements, the 1aboratory
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'1tse1f (floor, walls, table top, etc.) prOV1des a "fixed” frame with respect
to which not1onb may be observed. The problem in seismometry is that when

a seismic wave arrives, the eatire local environment, fixed as it is to the
earth's surface, moves, Our laboratory building or observatory takes part
in the motion we wish to observe. Therefore, the problem of seismometry
comes dowii to the establishment of a reference that does not take part in-
the seismic motion. It is quite alright if this reference takes part in

the general motions of the earth, e.g. rotation and revolution around the
sun. It is only necessary that it remains at rest relative to the p051t1on
of the earth's surface as it was before the seismic wave arrived.

The ideal seismometric imstrument would be provided by an object that
hovered over the earth's surface at a point fixed with respect to a coordi-
nate system that rotated with the earth as a whole. From such a space
platform, one could measure the motion of particles on the earth's surface
as they vibrated under the infiuence of seismic energy. Such an ideal
instrument, completely decoupled from the earth, is not practicable because
of gravity. Therefore, we approach this ideal as closely as we can by
supporting am object agesinst the force of gravity, but coupling to the
earth as loosely as possible. Because a compromise is necessary, in that
the object to be used as a reference is coupled to the earth, the instru-
ment will not be a perfect one. However, because the coupling is loose,
there will be relative motion between the object and the earth. We can
detect and record this relative motion, and Imowing the characteristics of
the coupling, we can recovet the true motion of the earth more or less
accurately, All selsmographa with one important exception are based on the
principle just outlined. We shall begln oyr study, by considering the )
properties of the motion of a body that is loosely coupled to a supportlng
f ramework, .

Several terms have been invented to descrlbe seismic instruments. A
seismoscope is a device that gives visual evidence that an earthquake has
occurred. It does not provide a permanent record of ground motion as a

“function of time. A seismometer is a detector of seismic motion, It pro-
vides a signal containing quantitative information about.the motion. A
se1smogra2h is a complete instrument for. recordnng ground motion. It con-

-'sists of a seismometer and recorder, 1nclud1ng timer, with any assoc1ated
filters and. ampllflers : -

2. Some general references

No adequate textbook on seismological instrumentation exists, Useful
information is scattered through the literature, and summaries may be found
in textbooks on se1smology or exploration geophysics. For the most part,
‘the seismologist must turn to the journals for material on his instruments.

: _ The following list of references is not intended to be a complete
bibliography on the subject, but rather a listing of key publlcat1ons in
which the most important ideas are presemted, ~Some are primary sources, _
others are review papers. Additional references on specific topics will be
given when those topics are discussed. .

Basic vibration theory:
Thomson, W.T,, Vibration Theory and Applications, 1965.
- Myklestad, N,O,, Fundamentals of Vibration Analysis, 1956,
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Many other books on mechanical vibratioams.
Summary articles on seismic instruments:
Benioff, H., "Earthquake Seismographs and Associated Instruments,
in Advances in. Geophysics, volume 2, 1955, pp. 219-275.
Coulomb, J., "Seismometrie," in Handbuch der Physik, volume 47
- (Geophysics 1), 1956, pp. 24-74 (In French).
Willwore, P.L., "The Detection of Earth Movements," im Methods
- and Technlques in Geophysics, volume 1, 1960, pp. 230-276.
Nomokonov, V.P, and D.K., Ganguli, Theory of Seismic Prospecting
'Iﬁstfuments, Indian Institute of Technology, 1960,
General Instrument Theory:
Byerly, P., "Theory of the Hinged Seismometer with Support in
) Genieral Motion,” Bull, Seis. Soc. Amer., 42: 251-262, 1952,
Baton, J., "Theory of the Electromagnetic Seismograph,"” Bull
Seis. Soc. Amer., 47:.37-76, 1957,
Sohon, F,W. Selsmometrz Part II of Theoretical Selsmology by
Macelwane and Sohon, 1932,
Historical sketches and brief gemeral treatments:
Macelwane; J.B,; S.J., When the Earth Quakes, 1947, Chps. 9 & 10,
" Richter, C.F,, Blementary Seismology, 1958, Ch. 15.

"’

3. Stability of ‘equilibrium, restoring force, and linear systems

, We are ultimately concerned with the motion of a mass that is loosely
coupled to a supporting frame when the frame is moved. We assume that
before the motion of the frame occurs the mass is in equilibrium, i.e. the
sums of all the forces and all the moments acting om it are zero. Suppose
that the frame remains at rest, and let us 1nvest1gate the effect of dis-
placing the mass by a small’ amount from its equilibrium position. - We
further assume that the mass is so comnstrained that it has only one.degree
of freedom., : . '

When the mass is displaced, one of three things must happen: the mass
will tend to move back to its originmal position, it will tend to comtinue
moving in the direction of the d1splacement, or it still be in equilibrium
after the displacement and will stay in the. new position. In the first »
case, the original state of equilibrium is said to be stable, in the second
case, unstable, and in the third case, meutral. Stable equilibrijum implies
that after the displacement the sum of the forces (sum of the moments)
acting on the body is no longer zero, but an unbalanced force (moment) has
been called into play that is directed toward the original position of the
mass. This force (moment) is called a restoring force (restoring moment).
If the equilibrium is unstable, the small displacement will result in an
unbalanced force (moment) that is directed ‘away from the original position.
Such a force (moment) may be thought of as a negative restoring force; or
an unstablllzlnv" force. In neutral equilibrium, obviously, the sum of
the forces and moments acting after the displacement is still zero. This
does not imply that the forces acting on the body are all unchanged, but
that if the displacement results in:the action of a restoring force, it
also calls forth an equal and opposite megative restoring force,

From another viewpoint, a state of stable equilibrium is a state of
minimum potential energy of the system, so that any small displacement
increases the potential energy Unstable equ111br1um is a state of maximum
potent1a1 energy. .
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Concentrating on the case of stable equilibrium, we now examine the way
in which the magnitude of the restoring force (moment) depends on the size
of the displacement. The restoring force might be independent of .the size
of the displacement, it might be proportional to the size of the displace-
ment (linear dependence) or it might vary in a non-linear manner with the
displacement. The second case, that of a linear dependence of the restoring
force on the displacement, is an important special case. A system consist-
ing of an inertial member and an element that produces a restoring force
with this characteristic is called a linear system (more properly, an un-
damped linear system as we have not yet taken into account mechanisms by
which energy is taken out of the system).

In general, a mechanical system consists of one or mor2 inertial
elements, one or more elements that produce restoring forces (or megative
restoring forces), and one or more elements that absorb energy from the
system, called damping elements. We shall analyze the vibrations of such
systems, limiting ourselves to the case of one degree of freedom. -When the
vibrations take place under the action of forces that come from within the
system (restoring forces, damping forces), they are called free vibrations.
When the vibrations are the result of forces acting from outside the system,
they are called forced vibrations. Our goal is to investigate the forced
vibrations of damped, linear, one degree-of-freedom systems that occur when
the frame that supports the system is moving. The characteristics of these
forced vibrations for any system depend on the properties of the free vibra-
tions of the system. We shall therefore study free vibrations first.

4. The kinematics of undamped linear vibrations

Suppose. a2 mass, M, is the .inertial element in a stable linear .system.
‘Let % be the displacement of M in the direction of the one degree.of free-
dom, with the positive semnse chosen arbitrarily. - Since the restoring force
in a linear system is proportional to the displacement, we can w;ife'it as

R.F, = - kx,

where k is the proportionality factor (restoring force per unit displace-
ment). The minus sign indicates that the force is a restoring force (force
is directed oppositely to x). The factor k depends on the physical proper-
ties of the system, and must be determined in each new situation,. ’

By Newton’s second law of motion
M X = - kix,
where dots indicate differentiation with respect to time.
Dividing by M :
' ¥=-k/Mux
= - W?X, - (4-1)
where «? = k/M, The physical properties of the system are involved only in

w . The free motion of any stable one degree-of-freedom system in which the
displacement is a translation is expressed by this differential equation.

It is easy to generalize this to motion in which the displacement is a
rotation about some fixed axis. Let K be the moment of inertia about this
axis .and © the angular displacement. Then the condition for -linearity

restoring moment = - TO,
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where T is agaln a proportionality factor, the restoring moment per unit
angular deflection. Then, the equation of motion is

ae

kK8=.T®
és,('mc)e ‘
s - w?e 4 ~ $(4-2)

where «@? = T/K, Again, the physical properties of the particular system
are accounted for by <>, Equations (4-1) and (4- 2) are mathematically
identical, We need only find solutions for ome and we have also solved the

- other. We choose to work with (4-1) for définiteness. In the f0110w1ng
discussion, mass may be replaced by moment of inertia, k by T , and trans-
lation by rotation,

The kinematics of the problem are expressed c0mp1ete1y by (4-1). The
general solutaon to this equation can be wr1tten as -

x(t) = C eiwt + Cze -iet (4-3a)
= A coswt + B sinedt (4-3b)

C sintot +$) : (4-3c)

Exercise: solve (4-1) to obtain (4-3a). Express A, B in (4-3b) in terms of
Ct, Ca. Express C,$ in (4-3¢) in terms of A, B, ‘

Exercise: Find A and B in (4-3b) if %(0) = %, and %(0) = V.
_ Use the Laplace transform technique to solve (4-1) with these
same initial conditions. :

Conbidering the solutlon in the form (4-3c), we realize that because
the sine function is periodic, the motion is periodic. This is a very
basic kind of periodic motion. A motion described by (4-1) or (4-3) is
called a. simple harmonic motion. The free vibrations of any stable un-
damped, linear, one degree-of-freedom system is simple harmonic motiom.

AWe can discover the value of the period from the fact that the motion
repeats each time the argument of the sine function increases by 2T , but
not for a smaller increment. Thus :

sin(et + $)

[l

sin(«t + ¢ + 2T)
sin [@(t + 2W/e) +¢]

so that the motion repeats after a time increment of 2T/e>., This is by
definition the period

T

1]

_ 2 fer ' _ . (4-4a)
then, the frequency .
f

1)

«“ /2T . © (4-4b)

Going back .to the orlglnal physical parameters of .the system, for

translational vxbrat1on
T

[}

. 2w (W/K; £ = 1/2W/K/M
and for rotational vibration .-
T

3]

2R £ = 1/2T [TK
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The quantity «? , which contains all the information about the physical
~ properties of the system needed to determine the frequency of free oscilla-
tions, is called the angular frequency of the system. <« is expressed in

radians per second, f in cycles per second, and T in seconds per cycle, '

The amplitude of the motion in (4-3c) is given by C, and ¢ is the
EhaSe aﬁgle; The motion passes through a given phase point (zero crossing,
maximum, minimum) at a time ¢/«> before the sine function sin <2t goes
through the same point. x leads the function sin @t by the angle ¢ , or
the time ¢ /2., If only one motion is involved in a situation, ¢ can be
made zero without loss of generality. In many problems, including seismo-’
metry, two or more motions must be compared. Any one of these can be con-
sidered to start at t=0, and the phases of the others compared to it. If
$ > 0, x(t) leads sin «t, if $<0, x(t) lags sin « t.

Exercise: Find the velocity and acceleration in the simple harmonic motion
given by (4-3c)., Show that the velocity leads the displacement by T/2
and the acceleration is out of phase (leads or lags) by v . Show this by
plotting x(t), x(t), and ¥(t) on a single graph, with t as the abscissae.

In studylng the dynamlcs of undamped linear vibration, it is necessary -
only to write the equation of motion in the form (4-1), using the laws of
_motion. We then can immediately write down- the frequency of free oscilla-
tions of the system, knowing that the motion is. given by (4-3).

5. The natural frequencies of some systems useful in seiémometrx

We can now be more specific about the.loosely coupled mass which is to
form the basis of our ground motion detector. .We require that it be the
inertial member of a stable, linear, one degree-of-freedom system. We
shall see that the response of such a system to ground motions depends on
the frequency of its free vibrations. .We shall now find this frequency for~
a variety of systems that have proven useful in seismometry. In- these
systems the restoring force or moment is provided either by an elastic
element, e.g. a sprlng, or by grav1ty

5.1, 'Systems with elastic restoring elements
5.11. Simple mass-spring system

"The prototype of all systems to be considered can be taken as the
simple mass-spring. combination shown in the figure, A mass, M, is supported
by a close-coil spring. Amplitudes will be assumed small enough that the

' . strains in the spring are within the elastic
1limit of the material., Then the spring will
exért a force proportional to its elongat1on,
i.e, F= - k(L - Lo)

‘ = - kA,

where L is the length of the spring with mass
attached, in the equilibrium position, Lg is
the initial length of the spring before the
‘load was applied (assuming the spring is not
pre-stressed so that the coils close on them= .
seives), ‘and A ='L - Lo, is the elongation. The"
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proportionality factor k is called the spring constant or spring stiffness.
It is numerically equal to the force required to produce a un1t elongatlon
(dynes per cm, , pounds per inch, newtons per meter).

For a hellcal sprlng wound of wire with a circular cross- sectlon
= M a*/8nD?

where M = rigidity modulus of the material
.d = didmeter of the wire i :
D = average diameter of the he11x
n = number of turns

Assuming‘the number of turns per unit length is constant, the stiff-
ness of the sprino is inversely proportional tO'its length. :

If the mass of the spring is negligible compared to the ‘mass M, the
condition for equilibrium is

Mg - k A =0 (5.1-1)

Imagine the mass is constrained so that it can move only_verticaliy;
choose positive displacement downward, and give the mass a displacement x,.
After the displacement, the sum of the forces acting on the spring is

Mg - k(A + %),
. so that equation of motien is
o M = Mg - k(A + x)

U51ng the equilibrium-condition (5.1- 1)

or . = - /M x 1 (5.1-2)

Equation (5.1-2) is identical to (4-1), with «* = k/M, and k now ,
having a definite physical significance.. We immediately know the character
of the free oscillations. The motion is simple harmonic, with the per1od
or frequency given by (4-4),

Because we shall deal with several different kinds of periods or fre-
‘quencies, we shall put the subscript "n" on the ones related to undamped,
free vibrations, and call these the undamped natural period or natural
frequency For 'a 'mass supported by a massless spring, the undanped natural
angular frequency is |

“f = VI, L (5.1-3a)
the undamped natural frequency is ' 4i . : .
- £y = 1/2WEM . (5.1-3b)
and the undamped natural period is .
' = 2MWyN/K - (5.1-3¢)

We note from the equ111br1um condition (5.1-1) that kM = g/&x , so
that we can write :

s 27 \/A/g (5.1-4)

and similar expressions for «? and .f,



-9 =

We also note that gravity does not appear in the equation of motion _
(5.1-2).  Generally, if the effect of gravity is not changed by the deflec-
tion, it will drop out when the equilibrium condition is introduced, Here~
we get the same equation if we neglect grav1ty and the elongation A and
call the spring force - kx.

Exactly the same result would have been obtained if instead of using
Newton's second law of motion, we had used the conservation of energy. By
‘writing the equation stating that the time rate of change of the sum of the
kinetic and potential energy is zero in this undamped system, we would
obtain (5.1-2). See Thomson, pp. 9-13.

We can easily take the effect of the mass of the spring into account.
By assuming the displacement of any point on the spring is proportional to
its distance from the top, and using the energy method (Thomsomn, p. 14),
we can find the frequency to be

¢ = L /K '
n 3TV - 1/3 mg '
where mg is the mass of the sprxng

The restoring element may consist of several springs in combination.
In this case an effective spring constant may be found. The effective
spring constant.is the constant of a single spring that. would give the same
deflections for a unit force acting at the position where the mass is
attached as the actual combination of springs.

Exercise: Show that the effective constant of two spr1ngs in series (Flgure
. &) is given by L/keff = 1/k; + 1/kp

+.”  Show that the éffective constant of two springs in a close paral-
lel combination (Figure b) is ke = ky + ky

Show that the effective comstant of fw0'springs on a tandem’
.arrangement, Figure c, isAthe same as the close parallel combination,

Show that -the effect1ve constant of the two springs in Flgure
d is keff = (4k 1K)/ (& #+ ky).
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5,12. Spring-supported hinged boom,

A massless boom of length r, with.
a point mass M at one end is supported
in a horizontal position by a spring
with spring constant k. The pivot at
0 is perfectly flexible,

: . i . With the frame at rest, we can
(0] T 7“‘T1ﬁﬁ' take moments about O. In equilibrium,
A< ‘ r== -~j Mgr - kbha = 0.

When displaced through a small aﬁgle 9'(positive downward), the sum of
the moments is, to first order terms in © (an exact analysis will be given
later) .

Mgr - k(A + a®)a

- ka%®, using the equilibrium condition.
So the equation of motion is
Mc28 = - kaZo,
2

This is of the form leading to equation (4-2), with K = Mrz and T = ka ,
By, 1nspect10n, ' .

4’n2 = ka /Mr2
fn =‘1/2ﬂ v kaz)Mrz ' . )
1, = 21/ e /ka® (5.1-5)

If instead of the idealized system, we have a boom with total mass M
‘and moment of inertia K about a horizontal axis through O, with the center
of mass a distance r from 0, the equat1on of mot1on is

K 6 = - ka 9

and o 2
“, = ka /K

If the pivot at O is not perfectly flexible, but consists, for example,

of a thin metal strip, an additional restoring torque is exerted by. this
} hingeﬁ The spring constant of such a strip, clamped at one end, is .

3E1/4° = ky where EI is the flexural stiffness, and £ is the length. The
flexure of the hlnge is such that the tangent to the hinge at the point to
which the boom is fastened makes an angle.é /2EI under unit force, If we
think of the hinge as a spring of stiffness ky acting at the end of a
plvoted rod, the length of the rod to give the same angular deflection at

the free end is

A /e =(23/3E1)+ (3E142) =(2/3)L.
We can, therefore, replace the hinge by
an extension of the rigid boom of (2/3)&
(a small length compared to the length
of the boom), w1th a spring haV1ng a
constant 3EI/Z3 acting, and a flexible
pivot, The torsion constant of -this
equivalert spring (analogous to kaz for
the main spring) is

Flexural hinge
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ky(2/30)° (3EI/£, )-(4/3 £2)= 4E1/3L

2 .
The new value of«i is

2 4EI -
ka * 3T
- .

Equivalent Spring ,
5 : The effective pivot point is one--
third the length of the hinge from the

p01nt where it enters the frame,

5.13. Torsion pendulum, vertlcal flber

A mass M is fastened to a taut " vertical metal
fiber, The moment of inertia of the mass about
the axis of the fiber is K. Let the torsion con-. .
stant of the fiber, the moment“per unit angular’
- deflection, be T. B ’
The equation of motlon isK6=-T70

2
Q)nz’C/K

1/2T/T/K  (5.1-6)

fa

The case ‘in which~the_fiber is not vertical
will be discussed later. The torsion constant of
a fiber is given by : . ’

: - = =.Li_2_.
T £

where /M is the rigidity modulus, I, is the polar moment of inertia of the
cross-section of the fiber, and: £'is the length from the point of attach-
ment to the frame to the point of attachment to the rotating mass. For a =
C1rcu1ar fiber this become : '

/41Td4/32 , where d is the diameteri

In the above pendulum, we equ1va1ent1y have two f1bers, one from above and :
one from below, acting in parallel so the total tors1on constant 1s the =
sum of the two. :

5.2. Systems with gravity fesfoting forcé
5.21. ‘The simple pendulum

The simple pendulum is defined.as a point
. mass M suspended from 'a frictionless prOt by a -
L A . massless, infléxible rod of length L, constra;ned
[ v to swing in a plane

]
: >0
% ,-—ng

v : When the pendulum is displaced, the force of
- !# ,%‘Ev gravity exerts a moment about O equal to
- L - (Mg sin ©)L, o

-

"

‘The equatloniof“mofioh is
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M2 B = - Mgl sin®,

. This is, in'geheral, not = linear system. However for values of ©
small enough that © is negligible compared to ©, sin ©®==6, and

MLZ 8 = - MgL @ . .
To this approximation, 2 simple‘pendulum is a linear system. Then
' 2
P = g/L
£, =(1/2M/E/L , Ty = 21/ 178 _ (5.2-1)

Comparison with (5.1-4) shows that the frequency of a mass-spring
combination for which the imitial clongation is A is the s%me as the fre-’
quency of a simple pendulum for which L =4 = g/@ﬂfnz = gT,°/4m

For any system of the kind under discussion, with period Ths there is
a simplé pendulum of length L ﬁAngz/dﬂz that has the same period. This
pendulum is called the equivalent simple peandulum, and L is the equivalent

-pendulum length.

5,22. The physical or compound pendulum

We shall define a physical pendulum to be any distributed mass that is
suspended from a frictionless, perfectly flexible support, so that it is
free to rotate about a horizontal axis. The mass is M, and the moment of

’ " inertia about O is K. The center of mass C is
"a distance r from-O. ’ '

As for the simple pendulum, when the
physical pendulum is displaced through a small
‘angle ©, a restoring moment, about the suspen- .
sion point O, equal to - Mgr® acts. The equa-.-
tion of motion is ' '

- ‘Mgr©

K6 =

ey 2

“ = Mgr/K.

T, = 2m / K/Mgr (5.2-2)

The equivalent pendulum length corresponding to this period is K/Mr.
It will be seen that this length has considerable significance in seismo-
meter theory. It is the distance from the point of suspension 0 to another
point -on.the line through the center of mass known as the center .of oscil-
lation or the center of percussion, One of the properties of the center
. of oscillation is that if the pendulum'is suspended from an axis through
this point, parallel to the original axis, the period is the same as the

original period.

Exercise: Prove that the period of a compound pendulum is unchanged if -the
‘pendulum is suspended from the center of oscillatiom. (Hint: Use the )
parallel axis theorem for moments of imertia.) : : ’
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The distance from the point of suspension to the center of oscillation
is a property of the.physical dimensions of the pendulum and the choice of
O only. This distance, K/Mr, does not change even if the pendulum bar is
suspended in a different manner, such as from an elastic hinge, or about an
axis that is not horizontal. These changes will change the natural period
of the system, and therefore the equivalent pendulum length, but net this
length. For this reason we give this invariant length a special name, the
reduced pendulum length, £. The reduced pendulum length is the distance

from the point of suspension to the center of oscillation. It is equal to
the equivalent pendulum length when the bar oscillates about a horizontal

axis through the same suspension point under the influence of gravity only.
This suggests a method for determining 2 for any pivoted distributed mass.

In seismology it is necessary to develop systems with long natural
periods. Periods of 15 seconds to 30 seconds are common. The length of a
simple pendulum with T, = 30 sec is 225 meters., Clearly a better way is
needed to achieve a long period.

5.23. The horizontal pendulum

One solution of the problem of achieving a long natural period with
reasonable dimensions is to use the idea of the physical pendulum, but to
arrange the oscillating boom so that only a small fraction of gravity pro-
duces the restoring moment. This can be done by mounting the pendulum so
that the axis of rotation is almost vertical and the plane of oscillation
is almost horizontal, Such a system is called a horizontal pendulum.

Let the angle between the axis of
rotation and the vertical, called the
angle of inclination, be i. "Resolve the
weight Mg, acting at the center of mass
into components parallel to the axis of
rotation and perpendicular to this
.. direction. The system is in equilibrium
Mg Sinl when the component Mg sin i is directed
through O, so it has no moment. This
occurs when the center of mass is in the
plane determined by the vertical and the
axis of rotation, called the neutral
plane. The moment due to Mg cos i is
/Vﬂy taken up by the supporting structures.

rotation

I3

Z  axis of
|

|

{

|

. The system is now displaced through an angle © about the axis of rota-
tion. The weight is once again resolved into orthogonal components, one
parallel to the axis of rotation. Since the two components of the vector
Mg must be coplanar with it, the component Mg sin i is still parallel to
the plane determined by the axis of rotation and the vertical, as in *he

figure.
(View along the axis of rotation) The restoring moment for small dis-
placements is - (Mg.sin i) r 8 , so that the equation of motion is

K8 =- (Mgr-sin i) ©

2 s
“,° =(Mgr.sin i)/K

J S —
T, 2T /K/(Mgresin i) (5.2-3)
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By making i small, @ can be made small,:
or T, large, without changing K, M, or r.
When i = 90°, the result for the physical

I .pendulum, previously derived, foilows. The
effect of this arrangement is to replace g
by g sin i. .

"1f i = 0°,&, becomes zero, and this-
period becomes infinite. This corresponds
to neutral equilibrium. The displacement
does not result in a restoring moment.

C .. “1f i is negative, the period becomes
: -M§Sﬁ?i ) imaginary. Physically this corresponds to
c unstable equilibrium, and the pendulum will
fiop over if given any small displacement.

Mg sini

The equivalent pendulum length is K/(Mr sin i) s 4 /sin i. 'Thus, by
making i small, we have the equivalent of a very long pendulum. In seismo-
metry, the inclination is usually very small, so0 that to a good approxima-
tion sin i = i, then . '

T, = 2T,/ K/Mgri .

5,3. Systems with combined elastic and gravity restoring force

In any pendulum, an elastic restoring element can be added by using
metal strips for hinge matérial or adding auxiliary springs.. The restoring
moments due to the elastic elements and gravity are simply added.

5.31. Torsion pendﬁlum, fiber not vertical

If the torsion fiber in 5.13 is not
vertical, there will be a gravity restoring
force. Using results from 5.13 and 5.23,
the equation of motion is

K8 = . (Mgresin i + T) ©

2 ) .
@, = (Mgr-sin i + T)/K

i

0

i

T, = 2T /K/Qigresin i +T)

The period is shortened if ‘i is positive
(inclined toward the mass). . In this case i
can be made negative, so that gravity acts

" as @ negative restoring force. The condition
for stability (real period) is that
(Mgr sin 1 + T) >0,

An extreme case is that for which i = - 900, so that the center of
mass is vertically above the point of suspension., This leads to the in-
verted pendulum. A
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5,32, Inverted pendulum

The elastic restoring element can be
schiematically represented by a spring acting
at a distance a from the frictionless, per-
fectly flexible pivot. In actual instru- -
ments, there is usually an elastic member
at O, the action of which is the same as )
discussed in 5 12. The equation of motion
is (small ©) .

- kaze + Mgr® (sin i = - 1)

K8 =
2 v
. = - (ka” - Mgr) @
STV iTivy 2 2 . .
@ " = (ka" - Mgr)/K
T, = 2‘ﬁ'|/ K/(k:a.2 - Mgr)

By playing kaz against Mg, a long period can be achieved with small
dimensions. ' '

Bxercise: What is the stability condition for the inverted pendulum in the
example above? . ’

BExevcise: Write the equation of mo-~
tion for small oscillations and find
the natural period and stability '
condition for the system in the

- figure,

6. Free oscillations with damping

In any real mechanical system, energy is lost from the system because
of various dissipative actions. Whereas the free oscillations discussed’
in Section 5 would ideally go on forever, in fact they stop after a while.
Further, we shall see that it is desirable to introduce energy dissipation
‘into seismometers in order to obtain the most favorable response to ground
motion,

Any element that absorbs the emergy of free vibrations of a system is
called a damping element. Before proceeding to investigate the effects of
damping, we shall calculate thé work done in one cycle by a force that.
varies harmonically with the same frequency as’ the motion, -but is out of
phase with it. (Refer: Thomson, p. 68 ff). ’
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Let the displacement be X = % sin@t

and the force be F = F, sin (&t + $)

i

The work done in one cycie_ is W JFdx, integrated over one cycle

5
= F(dx/dt)dt
o 217/w
= F sm(wt & ‘i’)wxo(coswt)dt
2Tfe o 2
= %F, | [coset sinot cosd + coset sinq>]cudt

4] 20 h

= X,,Fo{cosqy[s:mz‘wt] + Slnm[&’ /2 + (1/2) sin <t co8 wz)] }
=T|"1Foxosim¢i’

Thus the work dome is positive (energy added to the system) if F leads
x, and is negative (energy dissipated) if F lags x. We shall return to the
former' case when we study forced oscillations. The component of F that
" absorbs energy is F, sin¢ , where ¢ is now specifically a lag. This is
the component that lags x by /2. Because the velocity leads the dis-
placement by m/2, the dlssa.patlve .

i ‘ X component of Fg is the component that
X\,/ : is directly opposed to the velocity, -

- WA \ = ifia N out of phase by 7
= . : A force in phase with x4, or out
FO sin® of phase by T , like the spring force,

does not change the total energy in
the system after ome cycle.

6.1. Viscous damping

The damping force must oppose the velocity, but the form of . that: force
\has not been otherwise specified. One important special form is that in
which the\da.m\plng force is directly proportmnal to the veloc:.t'y

Fd—-cx.

This kind of damplng is called viscous damping, and c is the coeffi-
cient of viscous damping. The name: derives from the fact that a viscous
fluid resists the motion of a body through it according to this law when
the speed is low. Several mechanisms for achieving viscous damping in
seismographs w111 be discussed later. '

demped system the same mass-spring combina-

tion ewamined originally, with a damping
~element, symbolized by a dash-pot, added.

The force per unit velocity excited by the

damping element is c(dynes/cm/sec., etc.).

The equation of motlon for free OSC111at10ns

becomes

M= - Kk - ¢k ' “(6-1)

We take as the prototype of ‘a uscously
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The solution of this equation is: . , ' ‘ - ' ‘

e [c & &k fc 2 k o s
—t | (=)-F t - :

= e 2M Ae (ZM Mo, Be 2M M . (6-2)

The nature of the free oscillations depends on whether the radical in
the exponénts is real, zero, Or imaginary. This, in turn depends on the
value of ¢ reélative to k and M, The value of ¢ for which the radical is

zero is
C. * 2/ kM

This is called the critical damping coefficient. If the actual value
of ¢ is less than this, the system is underdamped, if it is equal to this,
“the system is critically damped, and if it is greater than this, the system
is overdamped. The numerical value of ¢ tells us less-about the system

than the ratio of ¢ to cg, : : : -

%(t)

c/ec, = 'ﬁ, , the damping factor.

In terms of the damping factor, the system is underdamped if f{ < 1,
critically damped if i = 1, and overdamped iffi. > 1. In terms of the
- parameters of,the’system, f{ = cﬁ?/ﬁﬁ EACAZMJEZW)= cA?M@h)Awherecon isAthé
undamped natural angular freguency We can rewrite the original equation
of motion as o - o

%+ (c/M)k + (k/M)x = 0

% + 2Rk + wlx=0 (6-3)

and the solution as

e 2 T TS A
() = eh n‘t[Ae S- 195t pem/h wﬂt} O (6-4)

This form of the equation and solution has the advantage that it
enables us to sbsiract from the particuler mass-spring-dashpot system to .
any viscously damped,. linear, one degree-of-freedom system. "For each
system ¥, is determined as before, and %, is the ratio of the actual
damping coefficient to the critical damping coefficient. However, the
critical damping coefficient will not have the form found here, but must
be determined for each system, - For rotational motion, we must replace x
by ©, k by the equivalent T, M by K, and ¢ becomes the damping moment per.
unit angular velocity. C ’

Exercise: Write the equation of motion end find the critical damping co-
efficient for the-system in the figure. The boom is massless.’ :
' : 114 ' :
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Exercise: Use the Laplacé transform technique to solve (6-3) with initial

conditions x(0)= xg, *(0) = v,.

6.11. Underdampéd system, ﬁ( 1

For an underdamped system, the solution (6-4) becomes

cx(t) = e"ﬁwnt [Aei J1-R? %t pemiVde -h2 w“t]

ejet‘*')l’ilc xp sin(/ 1 -R2 <t + ). (6-42)

This is the roduct of a2 sinusocidel motion with amplitude X and angu-
lar frequencv L= %% and an exponenually decaylng functlon The .
motlon is as shown in the figure.

For ¢ = O, the motion is

Xn' ' : ‘ zero at t = nw/(f1 -vf\i “),

\* "g‘“ﬁwnf n=0,1, 2, ..., it is equal to -
o Rk L
Ss te n(tangent to the decay
Tee : curve) at . _ (n + LW

21 -f2 %

: : and has -its extrema at

= . . . : ’
AL [P S A e
TR e, R

Exercise: Prove all the above statements as to the properties of the motion.

Because the zero crossings and extrema occur at equally spaced inter-
- vals, the motion is pseudo-periodic. It is not periodic because it never
repeats, but phase points do repeat periodically. We 'extend the notion of
period .and frequency to mclucie this case. The damped matural anginlar ’

frequency is N <y =»m“’

n
The damped natural frequency is fg4 = (i/2m)/L -2 < =1 _'q 2 fo
and the damped natural period is T4 = 217/&2 = n/‘/l -f2 ,(6—5)

The damped period of underdamped mots.o"t is longer than the undamped penod
of the same system .

The amount of viscous damping in an underdamped system can be deter-
mined from observations of the decay of free vibrations. In principle, the
period could be used, but it is not sufficiently sensitive to small changes
in ‘( to g1ve accurate results Bzcause the decay is exponential, .the ratio
of successive maxima (or maximum.to fol‘loumg minimum) is constant. Sub-
stituting the expression for ty in (6 4a) and using the periodicity “of -the
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tangent function, we find for the ratio of successive maxima:

| o A " = enper{ 1)

X+

This ratio is called the damping ratio, The natural logarithmic of the
damping ratio is called the logarithmic decrement.

S o dnCan/ay,y) = 2TR4/1 K2 (6-6)

Thus, 1( can be determined from observation of the damping ratio by

5 = /2T : ‘ (6=7)
1+ (§/2m )2

This definition of the damping ratio follows the usage in engineering
mechanics, where f is usually small, and XpiXp,q is only slightly greater-
than 1. In seismometry, on the other hand, % is usually 0.5 or greater,
so that the ratio of successive turning points on the same side of zero is
greater than about 38:1. This means the second maximum is usually too small
to read accurately. It has become customary, therefore, in seismometry, to
use the ratio of successive turning points on opposite side of - the zero
position, This ratio is, of course, the square root of the ratio defined
above, . : )

o = e /[1-4)

§' = Lnlxy/x'y) =T R/1 -ﬂ_z = 5/2:‘ |

" and R S VA N— ' 0 (6-7a)

| ' ' J1+ (s/m)2

~ The results for underdamped free oscillations are‘summarized (different
notation) in Figure 5, p. 70, of Eaton. '

) Exercise: Show that J ='ﬁ?¥“]fl , where x, is the amplitude. after n

completes oscillations, starting with amplitude Xo. This is a useful result
for treating light damping. S :
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6. 12. Critically damped system, f, = 1
For ﬁrifical damping, the general solﬁtion,_COrreSponding'to (6-4a)vis 

%x(t) = e “nt -[Cl > Cz‘t] : (6-8)

" This motion is not oscillatory. Critical damping is the smallest amount of

damplng the results 1n non-oscillatory free-vibration.

Exercise: . o : o ‘ :
1. Use the Laplace transform technique to solve (6-3) for 1; =1,
and x(0) = %5 , %(0) = vg.

. . ' . et B
2.  Show that for x(0) = 0, %(0) = v, u(t) = Vote “n® " Show that

this motion has a single maximum at

i
m == o+ and Xy = Vo/eé/n

6.13. Overdamped system, R > 1

In this case, the solution (6-4) is used as it stands. Substituting
hyperbolic functions for the exponential funct1ons

x(t) = e:"'ﬁ n [?1cosh k2 - 1 egt + Csinh VRZ - 1 @nt] (6;95

Neither cosh nor sinh is oscillatory, so x(t) is not oscillatory. We
further note thatyg% - 1 <<, so both exponential terms in (6-4) decay
with time. Overdamped free vibration has a single maximumn and decays
toward zero monotonlcally after reaching the maximum.

Overdamping is often used in modern 581smographs The modern approach

-to calibration, however, is to calibrate the system as a whole and not

measure the intrinsic constants, such as the damping factor, separately.

If it is desired to neasure'ﬁ directly for an overdamped system, a method -
suggested by Eaton is convenient. The system is sét in motion by giving

an 1mpulse, and the txme requlred for the displacement to return to 1/10

the max1mum value is determined,

From (6-9), assuming x(0) = 0, %(0) 2 O

o Keptm o T
(Smex)e 10 = e I sinh P T gn
j R L = ’ . B -
Fhmas e “(t“’ ¥ i) sinh B2 1'9(ty + ©),

where % is the tlme after tp for the dLSplacement to. come down to == 1 xmax-
. . qF?———- 10 .

L tanh
/f\z L e

n

The time.tm is

" Baton introduces this and solves the resulting equation for t by sUccessive‘

approwimatlons The result for l<<~§§ £ .3 is presented in his Figure 6,
p 71. - : . ' ’
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6.2. Coulomb dghping (dry friction)

Any mechanical ‘system in which parts rub against each other will be
‘damped by the action of friction or Coulomb damping. This kind of damping
is considered undesirable in seismograph -systems and is always minimized -

. by careful design and construction. It is important in some old instru-
ménts that use pivots and in arny instrument that récords with a stylus, .
such as smoked paper or pen-and-ink recorders. '

The force of friction depends on the roughness of the surfaces that
are sliding over one another and the normal force that is pressing them
together. The force is always opposed to the velocity. In an oscillating
system, the force of friction is opposed to the restoring force during the
two- quarter-cycles during which the velocity is increasing, and acts in the
‘same direction as the restoring force during the two quarter-cycles in

" which the velocity is decreasing. This action can be expressed by two
equations, using a mass-spring system to represent any system, F is the -
- force of friction: '

‘M% = - kx + F, x decreasing (going from maximum to minimum)

M¥ = - kx - F, x increasing (going from minimum to'maximuh).
This is non-linear vibration, since F is independent of x,

A With initial conditions x(0) = Xo, %(0) = 0, the motion during the
first half cycle is. : . i . S

#(t) = (o - %) cosﬁJht + %

After one half cycle x(ad%) = - Xo * 2 £ , so that the amplitude has de-
creased by 2F/k in one-half cycle. The amplitude after a complete cycle,
using the second of the two equations, is xo - 4F/k, Therefore, the de- -
crease in amplitude during .each cycle is 4F/k, a linear decrease. The
period (again, in the»egtended_sénse),is.unchanged.by Coulomb damping. The.
amount ‘of friction can be obtained experimentally from the observed decay® = °
‘of the motion. ' o . o R

The motion does not go on forever, When the amplitude has become: )
small enough that kx < F at a turning point, the system will stick, Note
that the effect of friction is the same as the effect.of shifting the zero
position in the direction opposed to the velocity by the amount F/k during -
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. _ each half cycle and taking
X simple harmonic motion with
' ‘respect to this shifted zero.
This is apparent if we write

the equation of motion
¢ Mt = - k(x = F/E).

+F/k-|
-Flk*

_ Having determined F/k
from thé decay curve, we can-
‘write the acceleration due: to
“friction from

F_Fk_F_2 _A4rF

2

Tn? k °

6.3. Determining the amount of viscous dampiﬁg and friction when both
are present :

If the viscous damping can be removed, the amount of friction present
" can be determined separately. If this is not practical, the two can be
separated by considering the effect of friction to be a zero shift opposed

to the velocity.

Assume the viscous damping is 1ight.. Let xp, xn+i be successive
maxima, and Xy, X,+) be the corresponding following maxima.

Then the SUCCGS§ive peak-to~peak amplitudes are
‘ ) . 2
A =Xn+Xn
4
Az = Xn + Xn+i

As = Xn+1+ Xn+1

Now, taking free, viscously damped motion about the shifted zeroes

%y - F/k éf , %y - F/k A%g
—_— = € H —_— = E H etc
x; + F/k ' Xpey * F/K

where € is the damping ratio associated with the viscous damping .

From the expressions for € <,

x, - F/k = € %(‘x,; + F/k). (1)
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1 : '
Xy - F/k = €2 (xpe1 * E/k) (2)°
— :
*gep = F/K =€2(x), * F/K) (3

Adding (1) and (2) ~ x, *+ % - 2F/k ~=e (xm.l' + x} -+ 2F/k)

1 L
or Ay - 2F/k =‘E"’A - Z(F/k)ez
- S !
From (2) and (3) A, - 2F/k =62A3 + 2(F/k)E?
| L
Ay - Ay = el(hy = A
A, - A3
Since § =4, € , ﬂ can be determined as before.
Knowing & , F/k can be calcylaxgd,from R 1 -€ A2

2(1 _+€2)
If F is negligibly small, A =€ °Ay -or Aj/Az =¢ 2

Thus the damping ratio-can be calculated using peak-to-peak ampli-
tudes. This offers the advantage that the zero position need not- be known.

6.4. Solid damping

' Even in modern instruments in which friction is minimized, there are
still losses due to hysteresis in the elastic elements;, such as coil
springs, torsion fibers, and flat springs used as hinges. The energy
.absorbed by this mechanism is proportional to the maximum stress in the
element during each cycle, Because this effect i's small compared to the
"loss due to v1scous damping, it is usiually not separately analyzed but is
. lumped together with the viscous dampiiig.’ - In other words, the enmergy -

' faccounted for- by this 'solid damping -in"oie cycle ‘can alsc be accounted for

by some amount of v1scous dampxn . and is S0 treated

'7{- Forced motlon of a V1$COUSiV damped linear one degrfe of freedom
szstem : . . '

7.1. Solutlon of the equat1om for a harmonlc dr1V1ng force actlng on. the
. mass :

CIf a force £(¢) acts ‘on the mass in the dlrectlon of the one degree of
freedom of the system the equatlon of mﬂthn becomes . :

ME = - ke - cx + f(‘t) o o (7_1)~' S




T

o 2 ()

X ; @ =z — 7-2
or - ¥ + 28 ko @5 X = —y (7-2)
This equafion'is geﬁéralized in the usual way for rotation, for which ()
becomes a driving moment rather than a force.

The complementary function of this differential equation has already heen
found, and is given by equation (6-4). In physical terminology, this term,
which represents the free oscillations of this system, is called the
transient part of this solution, because it decays with time, more or less
rapidly, depending on T - : :

The particular integral represents the response of the system that is
dependent on the properties of f(t). It is found by standard methods of
solving differential equations. If we apply the Laplace transform to this
>quation, assuming x(0) = %(0) = 0, we get

$2x(s) + 2B sX(s) + ,2K(s) = B(s) , where
X(s) = QQk(t)]. and  E(s) =3 f&t)] , assumed to exist.

Then . X(s) = F(sj - , where si; s, = (»'ﬂt Zﬂz - ey
. (s - s1)(s - s5) :

If f(t).is specified, X(s) is known, and x(t) may be fouhd_by finding
the inverse Laplace transform. The factors involving s; and s contribute
the complementary function. ’

The special case f(t) = F, sin @t will be treated in considerable
detail. The result.will be knowledge of the harmonic response of the
system, a result that gives valuable insight to the behavior for more
general inputs. The angular frequency of the driving force is <, where

- subséript_refers to "earth™, since our ultimate interest is in the .case ‘in
_which earth motion drives the system, For this input

E(s) Fy <%
§) = ——
| o 2.2

By the Laplace transform or other standard method, the particulér
.integral is found to be ' .

K e - <’ - ~2hepey
T Xg(t) =— - zvsin@é‘t + e - cos=t
M2 - 2% @R el - Fep?
(7-3)

The subscript ng" stands for "steady-state", as this is the motion that

persists after the transient part of the solution has decayed. The result

cah be rewritten in the form xp sin (et + $).

where . - L _ Fy/M _ s
- Xg = R*%z _'Q,ez?z+ (Zﬁqéﬁﬁ)z] 3 (always considered p0§1t1ve)
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and
I 2ﬁ”’e“’n
$=tan " Ty
< = )
.Dividing numerator and denominator by “32, and using M<ah2 = k, we
obtain for the amplitude and phase of the steady-state motion. o

Eo/k

- (7-4a)
[ -2 + eha?]?

—2h (/=)
2

P = tan™!
1 e (/)

We can interpret the minus sign in ¢ .by considering the result of
the introduction to Sectiom 6. There it was found that a force adds energy-
to the system only if it leads the displacement. We realize that the driv- .
ing force must add energy or the motion would stop, - Therefore, the dis-
placement x must lag behind f, so ¢ is an angle of lag. We therefore re-

write x as xp sin (=t - & ), where now

‘i’ = tan -1 __2.{; (‘%/____%)' |

T (QQ/g,)Z (7-4b)
. e’ “n

and we have used tan (-¢) = - tan & .

We conclude that the steady-state response to a sinusoidal dr1v1ng
force is a sinusoidal motion that lags the driving force by the angle given
by (7 4b) and has an amplitude given by (7 4a)

Exercise: Prove (7-3) by finding the inverse Laplace transform,

7.2. The amplitude and phase response.

Xm,» given by (7-4a) as a function of <3/}, 'is the harmonic amplitude
response function of the system.  ‘If we interpret Fo/k as the displacement
a constant force F, would produce denoting this by xg¢, - the stat1c ampli-
tude response can be written in dimensionless form )

oL L B (-5

© xm/%st =1 for e/%h s 0 and approaches zero as  ““e/“4, becomes very. large,

for all values of % At resonance, @e = <), or *’/%) = 1, the resonant
response is ' '

"r/"st = 1/2% - (7-6) .

This resonant reqponse 1ncreases ‘without limit as the damp1ng factor goes

" to zero,.



Exercise: Solve the equation of forced motion (7-2) for ﬁ = 0 and f(t) =
Fy sin«jpt. Note the manner in which the response of an undamped system
goes to infinity -at resocnance.

The peak response occurs at
cw = - 2 -
D/ J1-2f2 N GAD)

Thus, the peak response does not occur at either the undamped or damped
natural’ frequency of the system, The value of the peak response is

xp/xst = 1/2RY/1 - 2) (7-8)

Exercise: Prove (7-7) and (7-8) by differentiating (7-5) with respect to
(“)e/“fl ). . ’ .

The peak frequency, <p, is real only for ﬂ <:J—72 For larger Values
of the damping factor, the largest response occurs at <% = 0, and the
response "decrease monotonlcally as the driving frequency increases. All of"
these conclus1ons are 1nc1uded in the figure.

bl¢ 1 .
For the undamped case, X:f = |\ T =52 , and the change in sign for
&
n

“¢/«2 > 1 is taken care of by the phaée angle.

. The phase angle by which the d1sp1acement lags the driving force,
given by (7-4b), is always zero at <% = 0 (D.C. limit), /2 at resonance,
and approaches T at high driving frequenC1es In the case of zero damp-
ing, the displacement is in phase for frequencies below resonance, and out
of phase by T for- frequenc1es above resonance.



The lag of Tl /2 at resonance is accounted for by the fact that at
this. frequency the driving force has only to supply the eénergy required to’
overcome damping, so the terms cx and f(t) are equal and opposite in phase,
This holds because the inertial term m¥ and the spring force kx are. equal,
a relation that holds only at resonance, where mX = - m<%x = - m‘”nzx =
- kx. For lower frequencies m¥ < kx, and the angle of lag is less than
/2, while m% < kx above resonance, and the angle is greater than "T/2,

At very high frequencies, the inertial term completely dominates because
of the factor «%2, and the driving forée is practically in phase with the
inertial term, or out of phase with the displacement by .almost .

My + ck + kx = Fp sin <et
x = X, sin ( Wt + )

[

M Zxpsin(gts ¢+ M) + cupsin(teds W2) + kxgsin(t+ §) = Fosin<t

KXm '

We<wn wé =wn

We note that the effect of appreciable damping, (4 near 1) in the
system is twofold: 1) the free oscillations, represented by the transient
part of the solution, decay quickly; and 2) the amplitude. response curve is
flattened, so that the response is almost the same over a fairly large °
range of the frequency. Both of these effects are desirable in a seismome-
ter. We also note that for damping of this same  order, the phase angle is
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almost a linear function of frequency for the same range of frequencies for
which the amplitude response -is flat. This is also-a desirable character-
istic of the system for use in seismometry, as will be shown.

7.3. The response of the system to motion of the frame

The essent1al problem ‘of seismometry, the response of the system to
motion of the frame, can now be treated, using the concepts developed in
the prev1ous ‘sections. We shall assume for the present that the motion of
the frame is a translation in the direction of the one degree of freedom of
the system. The force that drives the mass is transmitted through the
coupling between the mass and frame, i.e. the spring, pivot, hinges, etc.
and the damping device. In the ideal seismometer with zero or perfectly
flexible coupling, no force would be transmitted and the mass would not
move at all.

We shall again use the mass-spring-dashpot as the prototype system,
and generalize from it quickly. The following change in notation is.
o introduced: x(t) is now the displacement .
of the frame in the direction of the one
degree of freedom of the system, measured
with respect to a set of coordinates . fixed:
in the earth and not taking part in local
motions; y(t) is the displacement of the
mass with respect to this same coordinate
system (the "absolute" displacement of .
the mass), and z(t) = y(t) - x(t) is the
displacement of the mass relative to the

frame.
The Spflng force on the mass is - k (y - x) = - Kz. :
The force exerted by the damping element is - ¢c (y - %) = - c2.
The equation of motion is
My = - kz - cZ (7-9)

Equation (7-9) could be solved for the absolute displacement, y. We
are more interested .in the nature of the relative motion, z, so we rewrite
the equation, subtracting M% from both sides: ’

My - MX = - kz - cz - M

or : ’ MZ + cz + kz = - MX’

The equation of relative motion is identical to equation (7-1) for
forced motion, with f(t) = - M¥X, Thus, the relative motion of the mass
with respect to the moving frame is the same as the motlon that would
result if the frame were at .rest and a force equal to - MX were ‘applied
directly to the mass. Dividing by M, we obtain the fundamental equation
of the sSeismometer:

5or 2Regs v 222 = - % C(7-10)

In this form, the equation is genmeralized for any system of the type
that has been discussed. However, if. the system consists of a pivoted
mass, the point of the mass to which z corresponds must be determ1ned
Th1s will be done subsequently :




Let x(t), the ground displacement, be given by X, sin «3t. Then
- ¥ = “)2 X,8in <%t, and the problem becomes the same as fhat treated in

‘Section 7-1, with Fy = M <‘-*‘2)( . The free oscillations damp out as beforh,

0
With reference to the steady state solution, given by (7-4a),

)

The solution becomes
o (£)° stn C2E - ) N
z(t) = S e S (7-11)
2P L Rz 2 |b
o2+ e

The relative motion z, or one of its derivatives, £ or Z, is the quan-
tity that will be recorded by the seismograph. The behavior of z deter=~

" mines the response characteristics of the instrument., For the present we

shall consider only the case in which z itself is recorded. Then (7-11)
gives the response. Because X5, end therefore z, is small in most cases,
it is necessary’ to magnify z before recording it, in order to prodiuce a
useable record. Call the factor by which z is magnified Vg, so that the

trace amplitude, a(t) = Voz(t). Vo is a constant of the instrument called

the static,. or geometric, magnification. The manner in which Vg is
achieved will be. discussed below when particular instruments are considered.-

- We shall use the term static magnification only in the case in which the

trace amplitude. is a constant multiple of the relative d1sp1acement z,

.The equation for the trace, called the indicator equation, is then

<,
Yo (=2)? Xo sin( <t = )

[ -2« afsp?]d

La(t) = Vez(t) =

The actual magnification of ground dlsplacement by the 1nstrument is a/x,

'where a ‘and X must refer to the same phase point in a cycle, not .the sane

time. If we use “the trace amplitude ‘ay and ‘ground amp11tude Xo, the
magn1f1cat1on or d1splacement seﬁ51t1v1ty, ‘is

. #@ Vb’(?é%)?‘ o
Ve g T T 5L
Po [(1 _( Rk

.Thus' for the 51mp1y concelved selsmograph the amp11tude response can be'&

written as’ a functlon of frequency as
oy : (Q )2. . - (({ :
[ = S - (7-12).
Vg e '
© [('1 (@ﬁ—) ) : + (2'£\ ‘q‘)z ] :
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"'Because_frequencies less than 1 cps arve common in seismology, it is
of ten convenient to rewrite this in terms of the period ratio Te/Tn=¢ﬁﬁ;é

1

—_— = : T
Vo _[<1 - (Erli)z)z (zﬂ?‘i)z] 2
: n n

(7-13)

The response function (7-12) is not of the same form as xm/xst in
(7-5) because of the factor ( e/ y2  This results from the f requency
dependence of Fy in the present problem. With Fg depending on <%, it is
no longer convenient to use it as a reference in writing the response in
dimensionless forim.

The important properties of the amplitude response, from (7-12), are

V=0 at £ =0 (no relative motion at very low earth frequen-
“n cies). '
V— V, as o> —~> 0 (no absolute motion at very high earth frequen-
n “cies). : '
v 1 “&

—_ = = at = =1 (resonant response).
Vo T 2% P |

=

) .
at _& . é L . (peak response)
& X

<<

e 1 .

T A S

i

Exércise: Prove that the above relations are true.

The results for the magnification, or amplitude response, can-be
summarized in the figure. ) :




- 31 -

The peak magnification occurs at a frequency above resonance, and a
maximum in the sense mg/ﬂ*?sf %: = 0 exists only for'f\é —% For all_
values of damping V approaches V, at high frequencies. Thus V,, originally
defined as the factor by which z is magnified in the record, turns out to-

"be the magnlflcatlon of the system for very hlgh earth frequenc1es
» 2f (L)
1o (222 _ .
which the relative motion z lags the groundimotion x. This angle behaves
with variations in <’ /e), with % as a parameter, in the manner shown
above. However, when dlscu551ng the phase ponse of a seismograph, in
which z has been niagnified and recorded, on ust be careful, In making
the mechanical and optical connections from e mass to the record, one can
make the indicator move in either sense for a given sense of z, It is then
customary to specify which direction the trace moves (up or down) for a
given direction of ground motion. This refers, however, to very rapidly
applied ground motion, so fast that the mass doesn't move. Thus, it is
customary to take the high freguency limit as the reference. Since z is
approximately 180° behind x at this limit, by using this convention, we
essentially reverse z. With this convention, the trace displacement leads -
‘the ground displacenent by. the angle 77 - ¢ .. The time by which a given
phase point on the record leads the correspondlng phase point in the ground
motlon is (7 - ¢)/é2

The phase response is & = tan - This is the angle by

Z

Low - frequency, < is small,

High fre?quesncy‘, 'éf@a(mosf .
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- High frequency, z inveried.

(Ground moves up, record moves up. Record leads
ground by .this convention.)

7.4. Displacement meters and accelerometers

- @)
Consider the special case —= 3% 1. Then
- - ey .

In this case a(t) = - Vyx(t), and the record is a magnified version of the
ground displacement. The minus sign is taken care by the convention intro-
duced above. By choosing <, to be small compared to the ground frequen-
cies to be recorded, an instrument which produces a record of displacement
_multiplied by.a constant is obtained. Thus, a large values of T,, corre-.
sponding. to loose coupling to the frame (small k) is desirable. Such an-
instrument is called a displacement meter, but this term should be used
with care. It is apparent that a given system acts as a displacement meter
only for ground frequencies that are high enough. '

The same result can be obtained by inspécfion of “the equation of mo-
‘tion (7-10), for <4 very small. Then . : T

3 oae - ¥
and z & - X.

‘Since a = Voi, the above result follows,

v .

. oy Cen 2 ,
For the special case ':Z;<< i, §;~Q4:§) , a very small number.

e ' . s <
However, this gives a(t) = (Vo/eonz)caezx(t), with a phase shift <‘f>'—¢:_2‘f\,-z;§-
. : =

(tan® =< ¢ for small values). Thus, the record is proportional to the.
ground acceleration. The instrument can be called 'an accelerometer for.
- ground frequencies that are low enough relative to the natural frequency of
the'in§trumeﬁtt Note, however, that this effect is achieved by making %, o
iarge, so that V, must be large to give a usable record. The linear de-
pendence of phase on frequency results in a record free of phase distor-
tion. - - ' : ' :

Exercise: Prove that if the phase shift is a linear function of frequency,
no phase distortion appears in the record. ‘ D




’ Again the same result could have been obtained by inspection of the
equation of motion. Under the condition that «}, is very large, only the .
'third term is significant.

2 s
@ Tz o= 0¥

2

[\
i

S VAN
a=Vz~-V/a)2§E

o’\—.o n y.
" and the trace is proportional to acceleration.

7.5. Velocity and acceleratioﬁ sensitivity

The magnlflcatlon has been dellned as' V = am/x , the ratio of trace
amplitude to ground amplitude. One may also define the veloC1ty sensitivic
ty, the ratio of trace amplitude to ground velocity.

S = oay /(R = ap/uxg = V/edg o (7-14)
for sinusoidal earth motions.
. The acceleration sen51t1v1ty is deflned in a similar way

E=ay/(8)y, = ap/ Fung = V/ 22 (7-15)

These can be written in dimemnsionless form as follows:

o2
V. Zp : ' (5;) ’
V: = emm = (7-12)

o Xo o _Rl _(gs) ]+ (Zfi e)2 }

@ nS Q)E]Z];ﬂ 1 o \' :
alcom =( =y ) A . (7-14a)
2 -2 . .
@n E wm ,Zm 1 ) v ( - )

Vo | TGOn (oo 92 W, 7-15a)

It is convenient to plot response curves as the logarithm of the re-
sponse vs. the logarithm of ( “2/<%). 'On a linear plot, with <, V-as
axes, curves of constant S are given by V'= <5, from (7-14). These are
stralghz lines with. slope S,. Similarly, - curves of constant E are g1ven by
Vo= E, parabolas ' :
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(n a log-log plot, leg V = log s, * log s, and curves of constant & are
" straight lines with slope' +1. At log g =0, @ =1, v =S, Similarly
curves of constant aceeleration’ sen51t1v1ty are glven by log V= 2 log b
+ log E, stralghf lines with slope +2. .

4 S:Si

log we

The log-1log. plof of the response offers several advantages in addltion
to the above simplification, A constant ratio of frequency or magnifica-
tion becomes a constant length along the axes. it becomes convenient to
express the shape of the response curve by the slope of straight line seg-
ments that approximate the curve. Suppose, for example, that over some
range of frequency, the magnification is doubled if the frequency is
doubled. The slope of this portion of the curve is +1, "corresponding to
6db/octave. Thus, for the velocity .sensitivity.to remain constant, the.
magnification must increase 6db/octave.

There js also an advantage to plotting the response as S vs. “g
rather than V vs. «,.  On such a plot, curves of constant V are straight
lines with slope -1 and curves. of constant acceleration are straight lines

of slope +1.
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One advantage of using logarithmic plot of velocity sensitivity is that the
harmonic response curve is then always symmetric about eg/e =1 (See
Willmore, 1960, Figure 2). The peak velocity sensitivity, Sp = Vo/ 2 “q
(from (7-14a)), always occurs at resonance. For small values of <L/«
log S = log Vy/«, *+ log (cz%/cdh), so that on a plot of log e)hS/Vo vs.,
log «,/«’y, the response has a slope-of +1 (+6db/octave). For large val-
ues of <3 /<y, log S —> log Vo/e .~ log ( @y /), giving a slope of -1
(-6db/octave). With «JnSp/V0 = 1/2- fixing the peak, and the slopes for
large and small values of @ /e g known, an approximate response curve is
easily drawn. B . C

Exercise: Prove that the velocity semsitivity has the properties given
above. Sketch approximate velocity sensitivity curves (&«2;S/Vy) for
/=5, 1, 2 ' ' , -

8. Response of pivoted systems to motion of the frame

The theory of the seismometer developed in the preceding section can
be applied to any linear system with the prescribed properties. - With
regard to. pivoted systems, which are commonly employed in seismology, it is
only necessary to determine the point in the boom or mass to which the
relative displacement z applies.

‘We shall assume that the motiom of the ground is ggainAparallel to the
direction of the one degree of freedom of the system.

8.1, The simple pendulgm'

X : The transition from a translating mass

— A ’ on a spring to a pivoted system can be made
by considering the response of a simple
pendulum, Because all the mass-is at a
point, we can use the same notation as in
the mass-spring system. '

For small displacement © , we can
- consider that the relative motion of the
ﬁgz Mig— - mass is horizontal, Then the absolute dis-
— placement of the mass is x + L& . The
: © force acting on the mass depends only on the
relative displacement z = L8 (corresponding
to - k(y - x) for the mass-spring system).

[
& e e o o w2 @ g

T
<

~ The equation of ‘motion becomes

My = - Mge = - Mg z/L

Mz ;'- Mg/i z- - Mit ‘>

5=-g/Lz-% B C(8-1)
or 5o+ ‘@hzz = - ¥%. |

) This is identical to (7-10), with 4 = 0. Damping is easily added

and appears as in (7-10). The mass of the simple pendulum- has the same
response. for hogizontal motion as the mass in the mass-sprihg system. has
for vertical motion, and all of the remarks concerning the amplitude and - -
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phase response are applicable.  For example, to build an instrument which'

.will act.as a horizontal displacement meter, @y must be small, or L large.

Additional insight into the behavior of the pendulum can be obtained
by considering the location along the original line of- the pendulum at
which the absolute displacement is zero, i.e., the position of a node.
The absolute amplitude of the mass (zero damping) is

(“ /o202 L s

=7z + X =
. 1= (eoe/ o) 1 - (eop/ey)? X

Let y' be the absolute displacement of any point located at a distance b 'A:.
above the mass. Then : -

L-6b

>+x(1_»=—’;-_;L==—>‘

«
u

=y (

0 at a node.

Substituting for v

1 L.b b ,
. ’ il e
1o (/wp)? ‘

1]
o

_ 5 -
L - b (=%/=y)

u
o

o’
"

( cUe/‘ﬂ,)'z“L.

The position of the mass is found by drawing a line through the node, N,
and the pivot 0. For (/<) —> 0, b —3> =0 , and the pendulum moves
parallel to itself (z = 0). As ( «./=p) —> 1, b — L from above. 2
is'in phase with x. * At ( “Wp/«p) =1, b= L. The pivot is a node, and the
amplitude goes to infinity (this violates the assumption of small but is
still a useful notion to illustrate behavior at resomance). For (&,/<n)
greater than 1, b< L, and the node is a point on the string. 2 is now out
of phase with x by . (only for zero damping, of course). . Finally, as’ =~
(& /e0n) —— 9, b —> 0, and the node is in the mass. /z/ = x, and the

relative motion is T out of phase.
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Exercise: For what frequency ratio is the node at the midpoint of the
-string? ' ’ -

8.2. Pendulum with distributed mass

The response of a physical pendulum can be determined in a similar
fashion. Some care must be exercised in taking moments because the pivot
point is now moving. From dynamics, the time rate of change of angular
momentum is equal to the sum of the moments when the angilar momentum and’

the moments are with respect to 1) a fixed point, 2) the center of mass, or .

3) a moving point for which the velocity is parallel to the velocity of the
" center of mass., We .shall take moments about the center of mass, as Lamb
does in his textbook on Mechanics

The moment of inertia about a horizontal
axis through C is K.. - Consider the reactions
at 0. There is a vertical force - Mg and a_
horizontal force - H, where H is the force act-
ing at the center of mass. We evaluate H using’

. Newton's second law, and the principle that the
center of mass moves as a particle with mass M
would if the resultant of all the forces act1ng
at points in the body acted on it. The abso--
lute displacement of C is x + 1® ., so
H=Md2/dt2 ( x + 16 ) '

" Then Kcé == Mgr@ - Hr
= Mgre - Mrze - Mri

Using the pérallel axis theorem
K& + Mgré = - - Mrit.
The relative motlon of the pendulum 1ns1de 1ts frame, given by 9 s

- the same as if the force - Mi were applied at the center of mass, w1th the
frame at rest.

_'Then’ BBy . My
» K K _
R 2 ios ‘ :
or 6+ @ 8 =_ (1/0)%, - : o (8-2)

. where L= K/Mr is the reduced bendulum length and <4, has ‘the form
derlved in Sectlon 5.22. A damping momeni - c© can be 1ntr0duced , since’
the damplng force depends only on relative motvon AThen the equation be-
comes . . . :

_ B 4.2{@11@ + wnze = '-»(i/z,) R (e
o Then L8 + Z.ﬁ«) Ly + e Zﬁ@ o
or g+ Zﬁ&) z o+ w2y = _ § ' . (8-4)

where z =£6 is the relative displacement of the center of oscillation.
Equation (8-4) is identical to (7-10) for the mass-spring system. It is
now clear that the point in the penduium that behaves like the ’ mass in thé
mass-spring system is the center of oscxllctlon Thus the entire’ response
character1st1c of the physical pendulum is known from the dlscu551on in
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Sections 7.3 - 7.5, w1th z referring to the center of osc1llat1on . For
example, at high frequencies, it is the center of oscillation that has -zero
absolute motion, or-is the 'steady-point" of -the seismometer. From another»
viewpoint, the center of oscillation acts like the point mass of a simple
pendulum (Equation 8-1).

The case of the horizontal pendulum is most simply treated by remem-
bering that the only effect of inclining the axis of rotation is to change
the effective gravity force per unit mass from-'g to.-g sin i. For small
values of i, the equatlon of motion beCOmes (no’ damplng)

1G] + Mgri® = - er
. (L' ‘.,», .
6+ Lt o=(1/2) %

8+ @420 = (1/4) %, identical to (8-2),
but with &)n =g /uL . The conclusions concerning the response are iden-
tical to the case of the ordinary physical pendulum, but now <«p is- ‘much
smaller, so that for the same «g, we are farther out on the flat part of
the- magn1f1cat1on curve, K/Mr is not changed by the inclination, and the
center of oscillation is still the point in the. pendulum that z refers to
in all the results for relatlve motlon . :

8.3, Effects of general motion on pivoted systems (Byerly, 1952, Coulomb,
1956, Sect. 2, Sect. 9)

The analysis of the response of plvoted ‘systems has been carrled out
on the assumption that the motion of the ground is a translation in the
direction of the one degree of freedom of the system. In real ground mo-
tion, the direction of motion is quite arbitrary, and, as mentioned in the
introduction, includes rotations as well as translations. Analyses of more
general cases have been carried out by .several authors, - and Byerly presents’
.a complete treatment in which the. conditions are revealed for which all
motions except the one considered here, above, can be neglected.

If, for example, a horizontal pendulum is acted on by, ground motion
strictly parallel to the nsutral plane, it will not respond, as there is
no moment of the force - M¥ about the axis of rotation. But suppose a
motion perpendicular to the neutral plane, i.e., in the direction of in-
tended response, acts at the same time. The boom is displaced, and "end-
on accelerations" will have a moment. The moment arm is usually small and
this effect is neglected. Byerly examines in detail the conditions in
which this is justified, as well as the omission of tilts and rotations.
He makes only reasonable assumptions about "the ‘construction of the pendu-
lum, such as cymmetry which is usually found, and constraint to rotatlon
about an axis:

The end-on acceleration produces a moment dependent on ©, as expected
from the manner in which this quantity enters the problem. As shown by
Byerly (his equation (4), the effect is that ‘of a negative resting force,
In principle, then, end-on accelerations can lead to instability of -the
system, as discussed by Coulomb Section 9.

Byerly summar1zes the conditions under which we may neglect rotations
or tilts of the earth and accelerations other than that in the one degree
of freedom of the pendulum when the frame is at rest, as follows. -Our




notation is introduced.

2
& <« A slect tilts)
y - t ct s
Px2/ o (to negle i ]
T 2 2 . .
n Te. ‘ (to neglect end-on acceleration)
«< (can be troublesome for large
*m . Tn, and small Te)
2ﬂ'Th<< re/\ (to neglect rotations)
X, 4 - A
g“ L = E 2 (to neglect tilts, horizontal
tee Te pendulum)
A® 2 , : .
gL ——rmm = e (to neglect tilts, vertical
xgTed m pendulum) '
2mh << A\ - (to neglect rotations)
2 . N .
4m2r<< j; (to neglect rotations).
m

where /A = wave length along the surface of a simple harmonic ground motion
V= apparent surface velocity. ‘
These conditions are easily satisfied in all but extreme cases.

Exercise: Test these conditions for a pendulum with T, = 30 sec, L= 20 cm,
r = 18 cm, for waves with Tg = 1 sec, V = 10 km/sec, and. T, = 50 sec,

V = 4 km/sec. Determine the largest x, in each case for which the condi-
tion .is satisfied. C o

:9. The effect of tilt on a horizontal pendulum’

Although the dynamic tilts associated with the incidence of seismic
waves have a negligible effect under the conditions outlined above, .large
and very slow tilts of the earth, associated with atmospheric pressure
variations, temperature variations, and sometimes tectonic activity have

- : " pronounced effects on long period horizontal
pendulum. A tilt of the instrument frame in
the neutral plane will change the period
(because the angle i changes), but the pendu-
ium will not rotate about its axis. We shall

"call on angular ‘displacement in the neutral
plane an inclination, as before, and use
"tilt" only for an angular displacement normal
to the neutral plane about a horizontal axis.

The neutral plane is the plane of the .
vertical and the axis of rotation, If the
axis of rotation of a horizontal pendulum at.
rest is tilted, the orientation of the neutral
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plane changes. The pendulum must then rotate about the axis of rotation
until the center of mdss is in the new neutral plane. We assume the later-
al tilt is small enough that the change in i is negligible. Then the angu-

lar displacement of the boom about the. axis is

6= /i . (o-1)

Thus, for small values of i, i.e.,.long period pendulum, a small tilt
produces a large displacement of the boom. Solving the period expression
(5.2-3) for i and substituting ' i

2 ) :
6 .= 8Tn ,_’1/ , (9-2)

———
4m £ .
so that the tilt sensitivity increases as the square of the natural period.

. If the seismograph is ome that directly records z = £0, this response
to tilt can seriously disturb the record, resulting in wild wandering of

‘the trace. The McComb-Romberg seismograph (Macelwane, 1947, p. 161) is an

example of 3 mechanical-optical system in which tilt compensation was pro- -
vided. The insertion of an electromagnetic transducer, SO that z is re- .
corded rather than z, eliminates the wandering of the trace in response to -
slow tilt. .

The sensitivity of the horizontal pendulum to tilt can also be put to
use. By using a very long period and recording by direct coupling, the
instrument can be used to record the tilts (one man's noise is another
man's signal). Also, by applying a xnown tilt, § , to the frame, a known

displacement can be given to the center of oscillation
gT
z =.¢e = ~—£§~¢
4n

This'provides‘a'simple means of determining fhé.stétic magnification of a
direct recording seismograph. This techniqueé will be discussed further
below. . '

10, Non-linear effects in_the long-period vertical seismometer

(Réference: J. Wilip, "Zur Theorie und Konstruktibn von Vertical Seiémo-
graphen", Gerl. Beit. z. Geophysik, 19:4, 1928; F.W. Sohon, Intro, Theoret-
ical Seism., Part 11 - Seismometry, 1932, pp. 29-34)

In the analysis of Section 5.12, a system sensitive to vertical ground
motion was considered. In this system, the period may be lengthened by .
decreasing a, the moment arm of the spring. The initial tension in the
spring must then be increased in order to support the boom in the-rest po- -
sition. Theré is a practical limit to how long a period can be achieved
this way, and greater flexibility is provided“by two steps: connecting the-
spring to the Boom below the horizontal plane through the center of mass,
and létting the spring act on a line inclined to the vertical. We shall
analyze such a system, following the discussion in Sohon,
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) =Db; +by =1L, the.length of
Q b1 the spring in equilibrium °

"Restoring moment of the spring 'In this analysis we shall not neglect
the "change in the momegt arm. a, of the spring, as we did in Section 5.12.

In the triangle OAB, L p2 + g% - 2 pq cos & .
‘Differentiating, and letting dL/dd~ = 2LL' = 2pq 51n6( (10-1)
" The area of AOAB is al/2 and 1/2 pq sin & , 'so that o
; ‘al = pq sin g - (10-2)

From (1) and (2) ) L' = a S ‘ (10-3);
Differén 1at1ng (2) a'l + al' = pq cos oA ' ‘
U51ng (3) . a'l = pq cosok - a2 ; (10-4)

v a''L + a'L'= - pq sino{ - 2aa’ '
By (2) and (3) - : a''L = - al - 3aa' . (10-5)
ising ton Gx ¢ ) = TEREEUBL g o =i 50

| L 1o (1/2) (by/a) a2 - bk,

Ot =T X o7 Ty oL

Using (2) - ‘aL cot & = pq cos ol = a2 - byby . (10-6)
Then, from (4) a' = - byby/L - (10-7)-

and from (5) a'' = - a - —z%iif = . a + —Ei§%22; (1o_gj

"(Note: From (7) a' = 0 for by, = 0, the case in Section 5.12, so the approx-
imation made there is good.)

If we now. displace the boom by © = d ol, we can write the new value of
the ‘moment arm by means of Taylor s ser1es keep1ng only terms in: e2

a+ Aa=a+a 9 + l a''e2 + 0(63

by b, . 3abyby, - :
= a- t + 5 (-a+ ,_,_1;2_> e° (10-9)
- ~Lb

Call the initial spring tension P (= k A in earlier sections). After

displacement, it is I
: : + k(A L)

+ k(L' + IL''e2) .

+ k(a0 + 3a'@2) .

+ k(a® - (zblbz/l)ez) o (10-10)

P+ AP

a=B= T B
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“The spring moment after displacement is. (c.w. is positive)

L (D +AP)(a + Aa) = - Pa - (ka® - Pbyb,/1@

b [- e - ELEL R G E
.o _ . i (10-11)
(Note: Again, with by = 0, and keeping only-terms in ©, we get the
result of Section 5.12.2
The gravity moment is .
Mgr cos © = Mgr (1 - ©2/2) + 0(8%) (10-12)

In equilibrium, Mgr - Pa = 0. It is important that the center of mass
be on the horizontal plane through 0 to eliminate response to horizontal
ground motion. i

The total moment is., adding (11) and (12), and inserting the ‘equili-
hrium condition ) ) '
R 2 aby be P 9 . . o
- (ka® - Pbyb,/1)0 + (x - 0" . : (10-13)

L

The equation of motion is obtained by equating this to K8.
Considering only first order .terms, and using P = Mgr/a; .

KB = - (ka2 - Ngrblbz/aL)e
so that “%2 = kaz/K - gbyby/all, using K/Mr =4 , (10-14)

Thus a long period can be achieved by making 'a' small, thereby decreasing
the first term and increasing the second. If we make b, = 0 as in Section
5.12, we lose the advantage of. the second term. Physically, what has
happened is that this arrangement we have managed to make the moment arm
decrease as the spring lengthens, so that the restoring moment per unit
angular deflection is smaller. A :

ilowever, if we make the coefficient of © small, in order to obtain a
‘long period, the term in © is no longer negligible. The equation of mo-
tion is non-linear and the free oscillations are no longer simple harmonic
motion. Dhysically, the term in 6 in (10-13) changes sign with 8, but the
term in 6% is always positive. Therefore, the restoring moment for a given
.positive © is less than for the same angle in the negative(upward) direc-
tion. The motion is not symmetrical~about.the.zero‘positinn, and the period
becomes a function of &, This is the fundamental difficulty with the long-
period vertical originally built by Galitzin. ) )

10.1. Wilip's solution

Cne solution to this problem was suggested by Wilip (19238), and led to
the Wilip-Galitzin vertical seismograph that is still in use in a number of
observatories. Wilip suggested fastening a second spring with its point‘of'
attachment above the horirontal plane through the pivot and center of mass.
The result is that L; = by - bpy, as shown in the figure. An analysis
similar to the one carried out above shows that the restoring moment of ‘this
spring for a positive (downward) @, is - i : A

PL b 3a.bh.b, - . P
2 2
_ (k]_al? + ___1__]:_1__._1._)9 - .__._].‘__l..,.‘,z__(kl - ...._1‘._)'92' (10_133)
18!
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Because both terms in the coefficient of © are positive, a long period can
not be achieved.by this arrangement alone, However, the important result
is that the sign of the 02 term is opp051te to that in (10-13). By combin-
ing the two conflguratlons, it is possible to eliminate the term in 92 and
st111 achieve a fa1r1y long perlod The condition to eliminate 6% is

3abyby k Cp ) = 3a1by10p) o Py ,
2L R A TaLy 1=y

The natural angular frequency is
I °1% . Puiiz )
a lal - L L

@2 _

n . K

The Wilip-Galitzin is designed on this principle. The period is about
12 seconds, considered long at the time the instrument was developed, but
only intermediate today. The improvement actually achieved over the:singlé
spring system is illustrated in the flgure, taken from Wilip.

10.2. The zero-length sprlng

- (Reference: L,J.B. La Coste, "A New Type, . Long Period, Vert1ca1 Seismograph"
, Physics, 5:7, 1934, pp.. 178-180.)

Inspection of (10-13) reveals another way of making the coefficient of
02 vanish: the use of a spring for which (k - P/L) is zero. This 1mp11es
that' the initial spring tension be P = kL, that.is we require a spring that
exerts a force proportional to its length. Comparing this to the usual
" expression P = k(L - L,), we see this requires that the initial length, T,
- be effectively zéro, and the elongation of the. spring be equal to its
length. Such a spring is called a zero- length spring.

A zero-length spring is made by bendlng the wire as the coils of the
spring are .turned in such a way that the coils are pressed together (La
Coste, also’ Coulomb p. 49). Then a certain amount of force is required to
- open the coils, Enough initial stress is put in to make the force to JUSt
open the coils equal to the spring constant times the actual phy51cal ini-
tial length Then for greater loads, the spring has the desired propeérty.
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"This type of spring is used in the Press-Ewing vertical seismograph and in
the Sprengnether Columbia vertical that is used in statlons of the World-
Wide Standard Seismograph Network.

A typical configuration is that
in the figure. 2 AOB is 90°. Then,
putting P/L = k in (10-13), with
b, = a/tan e , b, = a/tan @, the
restoring moment for a positive © is
- ka® (i - 1/tan& tan 8.

If dimensions are .chosen ‘so
that OA = OB, X ol = A& = 45°,
then the moment is zero, and an in-

Q?i) finite period results, A long, but
finite, period can be achieved by-
making gAOB slightly less than 90°,
say (90°- but keeping OM hori-

.zontal. Then, rewriting the expre551on for the moment in terms of

P=a/sinet , with ol = &,

- kp2 (sin® ol - cos d )e = (kp cos 2 d )0
Anglecx is now (45° =+ J//z)

——— O ——iy

kS

The moment is kp? cos (90 + Y )8 = - (kp2 siﬁ'ﬁ')e.
‘Then - % = wp? sin YK,

and the .period is easily adjusted by changing ¥ . In the actual seismo-
meter, provision is made for moving point. A horizontally, and then changing
the tensiom in the spring to keep the boom horizontal, The period can also
be made finite by giving a small initial length to the spring, but this
brings back the non-linearities that we sought to eliminate. .

Exercise: Write the expression for the total moment on the zero-length
spring system starting from the beginning, rather than from (10-13). Show
that for OA = OB, and ¥ AOB = 90°, the moment is (Mgr - kpz) cos ©., Thus

if we make kp® = Mgr, the moment is zero for all 0, and the period is in-
finite. .This 'shows that the result above is not only va11d to terms in the
second power of 0, ‘but is exact.

11, Some other. problems of seismometry

It is straightforward to design.on paper a seismometer that will have:
the desired characteristics. The realization -of an actual instrument is
not so easy, especially for long period systems. One- of the first difricul-
ties arises for vertical instruments because springs are not ideal instru-
ment components, Three characteristics of springs are unfavorable: thermal
expansion, thermal variation of the spring constant, and elastic créep.

Some materials, such as quartz, have low temperature coefficients of expan-
sion and elasticity. These have found extensive use in devices in which
the suspended mass is small, such as gravity meters. Elinvar is. the best
material for springs able to carry the large masses employed in long-period
-vertical sermometers It is still de51rable to minimize temperature var1—
ations in the. lnstrument vault.
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Elastic creep is a problem primarily during the initial period of op-
eration of an instrument. Many days may be required before a stable zero
of the instrument is reached. If it is necessary to clamp the instrument,
a new creep cycle begins when it is again unclamped. It is good practice
for the manufacturer to stretch the spring to near its operating length for

.a long period before installation in the seismometer in order to minimize .

the time required for this adjustment.

Temperature variations in the vault can cause other.troubles. If the
temperature of the pier should be warmer than the air temperature, which
can occur readily in the winter, convection of the air will result. This
moving air can cause very bad disturbances of the pendulum, resulting in
poor records. The problem is solved by either heating the entire vault,
with the heat source at the ceiling, or by putting heaters into ‘the instru-
ment cases, near the top. In neither case should the heaters be thermo-
statically controlled, as the thermostat cycle will appear on the records.
By ‘trial and error the correct rate at which heat should be added to give
stable operation is found, ' '

Thermal stresses in the frame of the instrument can also result’in
disturbed records. The solution is again proper addition of heat, and ther-
mal insulation of- the frame itself will result in marked improvement.. Heat
treatment of the frame after assembly to relieve stresses introduced during
manufacture has also proven useful, .

A further problem is the effect of air pressure variations on long-
period vertical seismometers (Ewing and Press, Trans. A.G.U., 34, 1953).
As pressure systems associated with weather changes moves over the station,
the density of the air in the vault will change. The suspended boom and
mass of the vertical seismometer are acted on by a buoyant force proportion-
al to air density, and so will respond to the density change.. One method
of compensating for this effect, suggested by Ewing and Press, is to fix a
light-weight vessel with volume moment about the axis of rotation equal to
the volume moment of the pendulum on the opposite side of the axis. . Since
the buoyant moment is proportional to the volume moment, any change acting
on the pendulum is equalized by the change on the compensating vessel,

A more simple technique, and one now generally employed, is to enclose
the seismometer in a sealed case of stiff metal, The seal only has to be
good .enough to keep out rapid pressure changes, as slow variations will not
cause disturbances on the record because an electromagnetic transducer is
emp loyed. '

The use .of elinvar as the spring material has the disadvantage that
this is a ferromagnetic material. The position and design of the permanent
magnet used in the associated transducer must be proper or a non-linear
force will -act on the system. This accounts, for example, for the .placement
and configuration of the magnet in the Sprengnether-Columbia vertical.

A further trouble is encountered in seismometers that use copper vanes
in the field of a permanent magnet to achieve viscous damping. Even the
best electrolytic copper contains small amounts of ferromagnetic impurities
which are acted on by the damping magnet, resulting in a slightly shortened
period and departures from linearity. The damping vane-magnet technique
has been dropped from modern designs.
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Instrument frames and the cases of portable seismographs should be .
stiff enough that the .natural frequencies are very much higher than the
frequencies to be recorded. Otherwise, strong impulsive inputs can excite
parasitic vibrations that appear. on the record. lLateral vibrations of the
spring in a vertical seismometer excited by a high frequency input produce
" a typical transient on the record. : .-

12. Mechanical-Optical (Direct rebording) Séismgg;aphs
12.1. " Static magnification

The direct way of using the systems discussed in the previous sections .
as the detector components of seismographs is to provide a means of record-
ing a magnified version of the relative-displacement, z. This displacement,
as derived above, refers to the motion of the mass in a system involving
translation, and to the motion of the center of oscillation in a .pivoted
system. 1In the oldest seismographs and in modern instruments in which
strong earth motions are to be measured and only low magnifications are re-
quired; the magnification of the relative motion is achieved by a series of
mechanical and optical levers. This magnification depends only on the geom-

.etry of the lever system-and is independent of .frequency. Of course the )
actual system magnification, from ground to record, is frequency dependent,
as developed above.

1f the final lever is mechanical, the arm is equipped with a device
for marking the record, such as a stylus scratching on a smoked paper sur-
face. If the final lever is optical, recording.is done photographidally.
The form of the record may be a strip chart pulled past the recording point
or a piece'of'paper wrapped on a drum, In the latter form of recording,
either the drum or the recording lever is mounted on a helical screw, so
that there is relative translation sideways of the recording point over the.
paper as the trace.is drawn. By this scheme, a long time, say 24 hours, can ’
be recorded on a piece of paper of convenient size and shape for handling. '
For normal earthquake recording chart speeds from 15 mm/min to 60 mm/min
are,uSedt Much slower speeds are used for recording earth tides, and mich
faster speeds for local earthquakes and explosions.

We have called the constant factor by
which the lever system magnifies the relative
motion z the static or geometric magnification.
Suppose we consider a very simple (but rather
impractical) horizontal seismograph, consisting
of a simple pendulum with a long massless
pointer extending from it, as shown in the
figure. Then if the mass is given a static
displacement z, a mark 'a' is drawn on the rec-

_ord, and the magnification is ‘

a/z = I/L,
‘where I is the total length of the indicator.

Suppose now the frame of the same seismo-
graph is shaken horizontally at a very high
frequency, so that |zl = x., - Taking into ac-
count the fact that the. drum moves with the
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earth, we see that the mark on the record is
agaln such that

a/z = I/L

_ Thus, as derived earlier, we conclude
that the magnification due to the geometry of
the system is both the magnification of a
static displacement of the mass with the frame

‘at rest and the magnification of very high
frequency ground motion, We have called this
the static or geometric magnification, V_, and
it is equal to I/L in this system

In an actual instrument, a set of levers
is used that is designed to make the instrument
compact. But for any instrument there is an
equ1valent indicator length I, and an equiva=
lent pendulum length L, such that the static
magnification is equal to 1/L.

b o = o

12.2. Calibration of a mechanical-optical seismograph

We have seen, Equation (7-12), that the actual magnification, V, de-
pends on three constants of the instrument (neglecting Coulomb damplng)
Vor Tp, and f\ Calibration of a seismograph means determination of V as
a function of fe so that ground motion may be determined from the record.
This can be done either by.directly measuring the trace amplltude for a
given ground motion at many frequenc1es or by measuring the intrinsic con-
stants, Vo, Ty and 'R and calculating the magn1f1cat1on from (7- 12) (there-

by demonstratlng one's faith in the theory).-
12.21. Shake-table calibration

The direct‘approach to calibration requires that a suitable shake-table
be available. Most shake-tables in use for engineering studies are not
suitable for seismograph calibration, The table must be capable of perform-
ing very small motions with displacements known to high accuracy, and must
cover the frequency range of seismological interest. The low frequency,

"small ‘amplitude requirement eliminates most commercially available systems.

It 'is also necessary that the stray magnetic field -at the instrument pro-
duced by the table be small. Electrodynamic systems fail in this regard,
and hydraulic systems must be used. The table surface must not be ferro-
magnetlc . Finally, the table must perform either, vertical or hor1zonta1

“motion with wery.little motion in d1rect10ns other than that intended. .
These stringent spe01f1cat10ns are met by.only a few systems that are avail-

able for purchase

. Even if a seismometric shake-table is available, it may not be a sat-
isfactory calibration tool in all cases. Portable and short-period observ- -
atory seismographs may be calibrated on a shake table. The method is much
less satisfactory for long- period observatory 1nstruments - It is almost
impossible to clamp, move, reinstall, and unclamp a long period seismometer
and end up with the same operating characterlstlcs, especially period, as

at the beginning. It 1s much ‘better to cal1brate long period instruments
after they are in place, using another method ..
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The shake-table procedure offers one great advantage. Departures of
the response from the idealized theoretical behavior can be detected. For’
example, parasitic resonances due to improper design of component parts of -
the seismometer will show up if measurements are made at sulficiently
closely spaced frequencies. Because these resonances are usually associat-
ed with low damping, they are very sharp and a source of great trouble in
recording. Because they are sharp, they may be missed if the frequencies
at which calibration is done are widely spaced. If it is possible ta drive
the shake table with either a narrow pulse, or a step function, for which
the spectra are continuous, these parasitic resonances wilil be fourid easily.

Most laboratories and observatories do not have a seismometric shake-
table system, and other methods depending on the determination of the in-
trinsic constants, must be used. The'following methods apply only to di-
rect recording mechanical-optical instruments, and additional methods for
treating electromagneti¢ instruments will be discussed later.

The determination of T, and ‘ﬁ_is best done by observing free oscilla-
tions. If the damping can be removed, T, is directly measured, The damp-
ing factor is calculated from the damping ratio, using (6-7a). Most direct
recording instruments are damped about 0.5 to 0.7 critical, so that, large
damping ratios are involved. It is possible, but not advisable, to find '
T, by measuring Tq and % and using (6-5), because of the large damping
ratio and the difficulty of measuring Ty accurately. -In most mechanical
instruments now in use, Ty changes very little with time, and needs to be .
checked only at long intervals, unless the instrument is dropped or- other-
wise abused. ‘ : : e

"12.22. Test weight method for determining V4

The previous discussion of seismometer theory suggests three methods
of determining V., all static tests. The principle involved is to give a
known displacement to the mass, in the case of a system with translation,
or to the center of oscillation, in the case of a pivoted system.

A direct approach is to apply a known static displacement to the sys-
tem by means of a micrometer screw. Then V, is directly calculated from
the resulting trace deflection. This is convenient during the final assem-
bly of the instrument at the factory, and may be suitable for field appli-
cation if the construction is such that the inertial member is easily
accessible. If, for a pivoted system, the displacement is applied at any
point other than the center of oscillation, a correction must be made by
multiplying the applied displacement by the ratio of the reduced pendulum
length to the distance from the pivot to the point displaced.

The reduced pendulum length must be known.- This is best determined by
removing the pendulum from the frame and supporting it so that it is free
to swing as an ordinary physical pendulum. The axis of rotation, now hori-
zontal, should be the same as when the pendulum is installed in the frame,
and all elastic elements should be removed. In this configuration, the
reduced pendulum length is the equivalent pendulum length, and is calculated
from the natural period. While the pendulum is out of the frame, it is
worthwhile to measure and record the total mass, M, and the location of the
center of mass, given by r. It is advisable when ordering instruments to
request these three mechanical constants from the manufacturer.
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The static magnification of a
pivoted system can also be determined by.
placing a small mass, m, on the inertial
member at a known distance, d, from the
axis of rotation so as to produce a
static displacement. If the effective
restoring moment per unit angular dis-
placement is T , the System will rotate
through an angle 6, such that

mgd =TO

- The period of the system is
- T, = 2T/X/T
so-that, eliminating T
' mgd = (4T 2K/T2)0
Dividing by Mr, and rearranging o
Thzmgd/41T2Mr = (KMr)o = 48 =z
Thus . A
Vo = a/z = 4T 2Mra/Tp%mgd (12-1)

"where 'a' is the trace displacement. resulting from the addition of m.

This test requires knowledge of M, r, and T,. It is especially impor-
tant that T, be carefully determined because it appears to the second power
in the expression for V,. ' The test can be applied to any instrumeént for
which it is possible to produce a moment mgd by placing a test.mass on the
system.

Exercise: Show that the static magnification of a vertical seismograph
based on a simple mass-spring system is given by

Vo =.4ﬂ'2Ma/ng2m' ,

where 'a' is the trace displacement produ¢¢ﬁ by p1aciﬁgAa mass mlon'the
‘main mass M.’ : : :

12.23. Tilt test method for determining Vo

It was shown in Section 9 that a displdcement-of.the center of oscil-
lation of a horizontal pendulum results from a small lateral tilt of the




frame:
Lo = (gr 2/amHY BRI

. Therefore, if the frame of the instrument is given a known, small lateral
tilt ¢ , and if the resulting trace displacement is 'a',. the static magni-
fication is -

W, = a/e = (4T 2/gT 2)(a/P) o (f2-2)

The same result is obtained if the pendulum has elastic hinges, and for an
inverted pendulum. - o '

Exercise: Prove (12-2) is valid for an inverted pendulum.

Because, from (9-2),. the displacement of the center of oscillation
varies linearly with ¢ , a small initial ¢ (due to mislevelling) makes mno
difference. It is also clear that a much larger tilt is required to pro-
duce the same deflection of a short period instrument than one of long
period. )

The tilt test may also be applied to vertical seismographs, but the
situation is more complicated. Indeed, the tilt test is also a standard
method of calibrating gravity meters based on the hinged, spring-supported
boom principle (Refer: Heiland, Geophysical Exploration, P. 134). Consider
the simple spring-supported boom of Section 5.12, and assume that the sys-
tem is exactly levelled initially, so that the pivot, the -line of action of
the spring, and the center of mass are in the same vertical plane, Let the
restoring constant be T , so that the natural period is 2T VK/T .

Let fhe frame of the instrument now be tilted
laterally through an angle ¢ , so that the axis of
rotation makes an angle ¢ with the horizontal,
and the spring makes the same angle with the ver-
tical., The gravity moment about the axis is
reduced from Mgr to Mgr cos ¢ . The boom must
then rise, so that the spring tension is reduced
by a corresponding amount. Note that the boom
rises for tilting in either direction, assuming a -
perfectly vertical spring initially. If the ini-
tial elastic restoring moment is 7 ,

M = Mgr .

4

Front view
(greatly exaggerated)

Front view
(greatly exaggerated) -
After tilting

Mgr cos Y =71 - TO ,

where 8 is the'angular displacemeht resulting from the tilt.
For small tilts, cos ¥ = 1 - ¢*/2, so that

Mgr - Mgr /2. = - T®
Using the equilibrium condition , and replacing T in terms of the period

2
gT
Lo- Doy
r 8T
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gT <~ '
.z=.lle=—-37‘i’2 (12-3) -
8T ¢ : S

Again, the known tilt results in a known dlsplacement of the center of
oscillation. Then -
. 5 . .
Vy = _§ﬂ;§_ 2 . ' (12-4)
T g2 '
€'n
Because the displacement of the boom depends on ¢ 2, the vertical
seismometer is much less sensitive to tilt than the horizontal. - This means
a much larger tilt must be used to callbrate a vertical instrument. A fur-
ther result of the second power dependence is that a small initial tilt due
to mislevelling can lead to.a large error in the result. This effect can’
‘be taken into account by tilting the instrument to both sides. of the ini-
tial p051t10n If an 1n1t1a1 tilt is present, the resulting trace dis-
placements. w111 not be equal. Fortunately, the effect of an initial tilt
can be removed by averag1ng the dlsplacements produced by tilting both ways,
.s0 that
i 2 3a(a :
vy = 2 2 ( L 32') , (12-5)
oT Ty } _ :

n

where a; and aj are the displacemenfs of the trace from zero for equal
tilts to both 51des The test. should always be done this way.

Exercise: Prove that averaging the two displacements removes the effect of
'initial tilt, correct to terms in the second power of the angles

Find the initial tilt such that- the dlsplacement due to a tilt to one
side is twice that due to equal tilt to the other side. How big a tilt is
required to produce a displacement of -1 cm on the record of a horizontal
seismograph with a period of 1 second and static magnification of 1007
lHow big -a tilt is required to produce the samc d;splacement on the record
of a vertlcal selsmograph with the same constants?

12.3. Examples of mecﬁahical_dptical seismographs

12.31. - The Wiechert horizontal seismdgraph (Macefm .2, When the Earth
Quakes, pp. 156-160)

- One of the oldest seismographs that was widely used the early days,
and which is still in usé in some observatories was developed by Emil
Wiechert at Gottingen. The horizontal component Wiechert was especially
successful. The small Wiechert consists of - an inverted pendulum with a
mass of 80 kg. The center of mass is approximately 100 cm above a univer-
sal hinge. Two orthogonal components of horizontal motion are recorded
from this single mass through a mechanical lever system. The naturél
period is adjusted to about 6 'secs. Air damping, in-which a piston
attached to the lever system moves inside a cylinder, is employed. The
damping is ‘adjusted by means of a port at the bottom of the .cylinder.
Static magnlflcatlon is about 100.

Recording is on smoked paper. The drum is weight-driven. Friction is
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quife'large in this instrument due to thé‘u5e of pivots on the stylus
" system andAthe'contéct between the stylus point and the surface of the
record, : . :

" Adjustment of the Wiechert is difficult. It is especially hard to-
- separate the ‘two components of horizontal motion. The static magnification
is measured by the test weight method. -

) Ldrgé Wiecherts, with masses of one to 17 toms, have also been in use
since the early part of the century. The large mass is used to make
effects of friction less important.

12.32. The Wood-AndersdnAhorizbntal seismograph (Anderson and Wbod, Bull.
' Seis. Soc. Amer., 15, pp. 1-72, 1925) . . .

- At the other extreme so far as mass is concerned is. the Wood-Anderson
" torsion seismograph. The system is a torsion pendulum (Section 5.3) with
a small mass in the form of a cylinder or elongated rectangle of metal.
The period is adjusted by changing the inclination angle, using the level-
ling scréw. The original Wood-Andersons were operated with fairly long
periods, but now torsion seismographs are adjusted to periods of 2 seconds
or less (0.8 seconds is considered the "standard Wood-Anderson" period).
The mass oscillates in the. field of a permanent magnet, so that free oscil-
lations are viscously damped by eddy currents if the mass. To eliminate -
violin-string vibrations of the torsion fiber, small oil-filled dampets
enclose the suspension at two points. ’

Magnificationiis achieved optically. A small mirror is mounted on
the mass, and a beam of light from.a lamp on the recorder is reflected onto
the drum. In some instruments a second mirror is mounted on the inside. of
the instrument case, so that the light beam is reflected from the moving
mirroi to this fixed mirror, back to the moving mirror and then to the
drum. In this way twice the magnification is obtained with the same optical
arm.

Exercise: Show that a beam of light reflected from a rotating mirror turns
“through twice the .angle the mirror turns .through.

'Magnificatién of 1000 6: more 'is easily achieved. The "standard Wood-
Anderson” has a static magnification of 2800, and is damped 0.8 initial.

. "The static magnification is measured most easily by the tilt test
(Section 12.23). The instrument is mounted on its base plate so that one
of the three levelling screws controls lateral tilt. If the distance from
this screw to the line joining the other two screws is d,. and if the pitch
. of the screw. (distance advanced per rotation) is p, a known tilt may be

applied by turning this screw through a known.angle. This angle may be
observed by inserting a mirror in this screw and observing the deflection
of .a reflected scale in a telescope. If change in scale reading on a scale
located a distance'A2 from this auxiliary mirror is 't', the tilt-is

$ = ptramayd

The reSuiting deflection of the recording light spot can be read on a scale
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set up in front of the-drum. Let the distance from the seismometer mirror
to the drum surface be A, and to the scale in front of the drum be Al' If -
s is the deflection of the light spot across the scale corresponding to a’
.reading 't' in the telescope, the static magnification is

v =-i6ﬂ3 Aghy s
o gp ATZ2 t
) 1'n

In modern versions of the Wood:-Anderson, alever is attached to this
tilting screw that can be moved between twd.index marks, giving a standarq
tilt to the system.. ’ )

12.33, Portable seismographs

~Several ghort period portable'mechanical-optical seismographs:for
measuring strong motions from local earthquakes or large explosions have
been developed.

The Ishimoto seismograph .is used as an accelerometer. Its natural
period is 0.1 'seconds. it employs air damping, and records through a stylus
on smoked paper. The horizontal component is based on the inverted pendu-
lum, and the vertical is a spring-supported hinged boom. Any of the
methods of determining V., which is about 200, can be applied to this
instrument because the suspended system is easily accessible., However, the
tilt test is not very satisfactory for such a short period instrument.
(ReferqnceE Notes by N, Nakajima, I.I.S.E.E.). :

The Sprengnether three-component portable seismograph is a mechanical-
optical; photographic-recording, system with a natural period of 0.75
seconds, damped 0.55 critical. In this case also inverted pendulums are
used for the horizontal components, and a spring-supported hinged boom for
the vertical. Damping is by.eddy-currents in a copper damping vane ‘
attached to each pendulum. The recording mirror is mounted on an axle that
is tdrned.thfough a bow-string and pulling arrangement by the relative
motion of the pendulum. Magnification is fixed, and may be specified from
7.5 to several hundred, depending on the application. 'V, is determined
most easily by the tilt test, since the entire system is enclosed in a

case. : .

The instrument is designed for recording for only a short time, about
'00 seconds, sO that_the camera must be started just before the event to be
recorded occurs. The chart speed is about 10 cm per second. The instru-

ment acts as a displacement meter for frequencies above about 1 cps.
. 12.4. Non-sinusoidal ground motion: Integration of the Indicator Equation

-(References: "The Determination of True Ground Motion by Integration. of
Strong Motion Records: A Symposium", Bull. Seis. Soc. Amer., 33: pp. 1-64,
1943, ‘especially paper by F. Neumann; Coulomb, 1056, pp. 31-32; Kisslinger,
Rull., Seis. Soc. Amer., 49: pp. 267-271, 1959) i

The differential equation of the motion of the indicator.of a direct
recording seismograph is obtained by multiplying (7-10) or (8-4) by V,:
2

i+ zitvné v w “a = o V¥ ' f : (12-6)
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If x(t) is specified, this equation can be solved for -a(t), as was done
for the case.of -sinusoidal earth motion in deriving the steady-state simple
harmonic response. Actual ground motion is much more complex, and x(t) is
not known. . If @ /< >> 1 for the entire signal spectrum, as discussed
in Section 7.4, the instrument can be treated as a displacement meter, and
the record interpreted as a magnified copy of .the ground motion. Undér

more general.conditioné, this interpretation is not valid.

A direct attack on this problem is to iﬁtegrafe equation (12-6) twice. -

?hen ' B t ot
x(t) = - 1/V '[a(t) + 2has I adt + <op? f [ adt dt - a(0) - Vx(0)
v : ) : 0 0 '

- 2R a0t - a(0)t - Vok(0)t ] (12-7)

If we assume the ground and the seismometer systeh are at rest until t = 0,

then a(0) = x(0) = 0. Further, a(0) = - Vo%(0); i.e., at the first instant

_the relative velocity of the inertial system is equal to.the ground veloc-
ity, but with the opposite sense. Then ‘

‘adt dt - (12-8)

- t . t
x(t) = - 1/Vq [a(t) + 2{“’:1 j'adt + a')n’z [
0 0

If a(t) is given by a seismogfam, (12-8) can be mechanically or numer-

ically integrated to give x(t). This process is simple in principle, but:
fraught with practical difficulties. For example, a small error in the
choice of the zero position of the trace accumulates on integration, so °
that an initidl small base line shift leads to a parabolic base line after
two integrations (Neumann, 1943). . . :

For the routine reduction of numerous seismograms, the double integra-
tion process.is too time-consuming. Another approach is to assume an equa-
tion for the trace and perform the integration in (12-8) analytically. For
example, Benndorf assumed the onset of the arriving wave train could be’ ‘
represented reasonably well by one-quarter cycle of a sine curve, i.e.

“a(t) = a, sin «)t, for 0&t<t,, where ty is the time of the maximum on

the record, which begins at t = 0. Note that ‘this does not imply that the .

ground motion is sinusoidal. The period of .the ground motion, 2TW/<g, is
taken as 4tp. The result of carrying out the integration is

x_ ax(ty) = - ap/V, [1'+~2f w /we * (edh/a)ejz'( w2 - 1 (12-9)

so that Benndorf's formula for the magnification of the onset of a new
phase is ' ’ :
A : _ " :

2 = (12-10)
1+ 2K @/ + (/@) (/2 - 1) -

am

b'es
m

Vo=

1}

A giscussion of.the validity of Benndé;f's“fd:mula is given in Kisslingef,
1959. Discussion of other representations of the seismogram trace is given
by Sohon, 1932, Ch. IX. : ’
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Exeicise: Derive (12-9) by putting a(t) = ag

integrating to t = W /2.~

sine,t in (12-8) and




Part 11

Electromagnetic Seismographs
13.  Introduction

The magnification that.can be achieved through mechanical and:optical
levers is limited to a few thousand. "To achieve higher magnification the
mechanical energy represented by the motion of the inertial member relative
to the frame is converted into electrical energy. With the signal in the
form of a voltage, almost unlimited magnification can be achieved when
needed by the use of high sensitivity recording devices, including electronic
amphflcatlon° Further, the signal can be filtered selectively to reject
unwanted noise components, thereby enhancing the ratio of useful information
to noise., With the signal in electrical form, it can be recorded on magnetlc
tape for ease of later processing, and can also be converted ea51ly on-llne
or subsequently to digital form for processing by a digital computer.

Any device which converts the. mechanlcal energy of the seismometer-
into electrical energy is called a transducer. . Several physical principles
~ can be applied to the designs of a tramsducer, but the most commonly used -
devices are based on electromagnetic induction., Other common types of
transducers are based on the change in capacitance that results when' the
separation of two cap301tor plates changes and on the piezoelectric effect. -
Experlmental instruments using lassers as transducers are nOW'belng tested,
and other mechanical-electrical effects in materials have been proposed. o
~and tested for transducer.used.

Although magnetie tape recordlng is now widely used for seismic
prospecting and various seismological research purposes, most observatories
record the transducer output by means of a galvanometer. Even when tape
‘recording is thé primary means, an auxiliary photographic record by means
of ‘a galvanometer is often made for monitoring purposes. ~Because of its
inherent reliability. and the need for costly play-back equipment for
processing magnetic tape records, it is like that most . observatories
will continue to use galvanometrlc recordlng in the foreseeable future,

Thls discussion will deal prlmarlly w1th electromagnetic, transduoers

" and galvanometri¢ recording. The physical pr1n01ples underlying these
devices are simply stated by the laws of 1nduct10n(MKS units used

throughout)
l) Voltage de#eloped‘ih_aAoirouit when the flux 1inking it chengeev
E=-d&/at 7 (13-1)
where & is the flux in webers;

: 2}4 Electrical field across a conductor ﬁoving in a magnetic field:

- = C .
0 S (13-2)
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where4§ is the voltage per unit. length (volts per meter);
V is the velocity of the conductor relative to the

- field (meters per second); '

3 is the flux density (webers per meter?).

_ 3) Force on a conducfor in a magnetic. field through which a
' current is passing:’ i
' -

F-18 x3B (13-3)

where f is the force per unit length acting on the conductor,
relative to the structure that supports the source
of the magnetic field (newtons per meter);
T ig the current in the conductor ,(amperes);~ .
¢ is a unit vector parallel to the conductor, positive
# sense 4in direction of conventional current flowy
: , 'E is the flux density (webers per meter?).
If a conductor of length L which is perpendicular to a uniform
“field B moves perpendicular to ﬁ and itself, the voltage across the
ends of the-conductor is E = - BVL. The sense of E is given directly
by (13—2);' This minus sign in the expression for E is usually included,.
as in (13—1), in recognition of Lenz's law. ’ ’

If a current I is passed through the same conductor, the force
acting is F = BIL. . If -the conductor is not perpendicular to the field,
the length to be used is the projection perpendicular to the field, and
if the velocity is not perpendicular to the plane of the field and
* conductor, its projection on this plane is used. These relations are
readily handled as they arise by vector algebra.

- 14, ‘Theory of the D'Arsonval Galvanometer (Refer: Sohon,1932,Ch.VIII)

The D'Arsonval, or moving coil, galvanometer is the type used almost
universally for seismic recording. The device consists of a coil of wire
" suspended in.s magnetic field, with the suspension.acting as a conductor

through which. the signal current flows. The magnet is designed so that
_the flux density, B, is uniform in the region in which the coil turnse
Consider a rectangular coil, with average dimensions a x b, with N turms.
éb _ ' If a steady current I passes through the
coil, the force on one side is

1

a
b

F = BINa newtons,
- and the moment is F-b/2. . :
By (13-3), the forces on the two sides

are such that the moments they produce add,

so the total moment is '

S

AR AV TS
(W)

A2 XA L]

T
2 BINa.b/2 = BINA newton-meters
“yr (14-1)

where A is the mean area of the coil} and ¥ = BNA is a constant of the
galvanometer, called the electrodynamic constant.
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In response to this moment the coil will. turn through an angle such

‘that the torsional moment of the “suspension is equal to the‘electromagnetic
moment: : . : . : .
' 11 0=Y¥1 ' ,

10=% - (14-2)
" The sensitivity of the galvanometer can be expressed by - the ratio of the
current T to the angle 6 it produces. This ratio, which is constant
over a large range of values of © , is called the galvanometer constant,
G. (See Appendix 14-4). - :

¢6=1I/6 =C/Y | (amperes per radisn)
(14-3)

The sensitivity is more usually expressed by the current required to
produce a deflection of one millimeter of a light spot reflected from
the galvanometer mirror. "If the galvanometer is installed in a box with.
a fixed scale, the deflection is on this scale. More generally, the '
deflection is taken to be on a scale one meter from the galvanometer
mirror. Taking into account the fact-that'the reflected beam turns -
through twice the angle of the mirror, the current sensitivity-is

g = G/ZOOO.amperes per millimeter on & scale at one meter,

The galvanometer is an oscillatory gystem, and must be ahalysed'as'
such when varying curfents pass through it. It must be noted that in
the construction of a galvanometer for seismographic applicationy it is
_essential that the line of the suspension pass through the center of
mass of the coil, so that the galvanometer does not act as a torsion
seismometer. ‘This fequirement calls for careful control in the final

assembly.

When the galvanometer coil is oscillating, the linear vealocity of =
the -side perpendicular to’ the flux-is(b/Z)G-.' Each side produces an
e.mofs acpording-to (13-2), and these add, so that the total veltage at
the coil terminals is : i '
- BWa. 2{b/2)6
- BNA 6.
=-Yb

B

Thus, § has a second significance.l It is both the momerit per unit
current and the voltage per unit angular velocity.

When the galvanometer is oscillating with the coil circuit open,
the equation of motion is: KI ® +d 6+7T1 © = 0, where K] is the moment ©
of inertia about the axis of rotation and d is the inherent viscous
damping, usually very small. ’ ' ’ :

If the .coil circuit is closed through an eXfernal resistance R, the.
current in the circuit will be : :

i =E/(R+Rg) = - X§/(R + Bg) (_14;5)

As a result of this éurz*ent., a moment fi= - XZQ/(R + Rg) . will act
on the system, This terms has the form of a viscous damping term. '
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TheAequation of free oscillation with the circuit closed is

K8 +{d 1/ + B8 + Tye = 0 © (14-6)
or ’ 6 +v2{f0n1é +«?nle =0 . |
with o o efm ='.tl/l‘{l - (14-7)
2 <q - a/ky + $/k (R + Rp) (14-8)

o The damping is controlled by the external resistance R. The minimum
damping corregponds to R =co, and is given by the open-circut damping
coefficient d. If R is small, the current i is large, and the resulting
damping momernt is large. - For 'some value of R the system is critically
damped. The critical external damping resistance is found as follows.
. The open-circuit damping is measured o

| L, 1 - ¥/

Appendix 14-A.
'Céiibration of a D'Arsonval galvanometer.

The galvanometer constant is determined by passing a small, known
current through the coil. Care must be taken to protect the galvanometer
against overloading, as it is easily damaged. The circuit in the figure

is suitable. R and Rp are very large compared to Rg, the iﬁternal
. . > - " resistance of the galvanometer, and is much
Galvo 2 _ .smaller. The battery voltage is meaS\]ired with

. v & potentiometer, with the ‘current flowing. Because. |
L L Rj<< R2 , the current delivered by the battery is

‘f)ﬁanr——= I> = E/R2 . The current in the galvanometer is

I-= 12317(R1 + R+ Rg). Gis determined by observing
the deflection of the light spot. If the deflection
[=3 is d on & scale at a distance L, 6 = d/2L, and
. N2 G = 2IL/d. Ry, Rp, and R may be precision decade
resistance boxes, or may be measursed with a Wheatstone bridge.

R. is still to be determined. This resistance should never be measured
with an ohmmeter'or'Wheatstone bridge, as the large current way damage the
galvanometer. A safe method is to use the same circuit, with the addition

_of & variable -shunt, Rg, across the gqlvanometer. The shunt is adjusted
. until the current (deflection)-is.one-half:the'value for the same setting
of Ry, without the shunt. Then . Lo C

By = Rs(_Rl + R)_/(R1 + R - Rg)a2 Ry for R>> 'I.is>>Rl..

(end of Appendix)

~ Then the damping 'ﬁl is determined for an external resistance Ry
greater than the critical -value, SO that damping ratio can. be measured.
1% = Ao + /2Ky (Ry + Rg)

. _K2/2.k1 = ‘v‘n]_(f - -KO) (Rl * Rg)
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If the critical external resistnace is Rx’ for whichfil =1
¥2/2K1 = @p1(1 - Ko)(Ry + Rg)

Equating and solving for Ry

Ry - By - _ L% (R +Ry)  (14-9)

1- ﬁo

Exercise: Knowing Ry, calculate ﬁfl, for any other value of ekﬁérnal
resistance, Rl. : L

exercise: Suppose you have measured Tpq, G Ry and 'fo. Show how you
can use these to derive the intrinsic constants of the galvanometer:

Yy T K1, and d.

15.  The moving-coil (Galitzin) transducer.

An Important advance in seismometry occurred about 1906 when B.
Galitzin successfully mounted an electromagnetic transducer on a seismo-
meter, and recorded the output galvanometrically. The form of this
transducer, one still widely used, is a permanent magnet mounted to the
frame, with a coil system mounted on the pendulum so that the coil ‘moves
in the gap of the .magnet. The Galitzin and Wilip Galitzin instruments
actually used four rectangular coils and two permanent magnets (see Figure
17, Coulomb, 1956). With a rectangular coil in this configuration, only
one side of the coil must.-be in the field of the magnetjotherwise the '
e,m.f.'s developed 'in the two parallel sides
would be equal and opposite.

The following analysis of the transducer action.
in a pivoted system follows M.T. Antune, "Les Sismo-
graphes Electromagnetiques et L'Enreglbfrement
Conforme des Mouvements du Sol", Boleti . 3a Sociedade .
Portuguesa de Cienias Naturais, Vol. IIL, a. A serie
(Vol XVIII), Fasc. 1, pp. 66-84, 1950.

to boom

Let ds be an element of length of the conductor in the 0011. Its
orientation is arbitrary, although in practice it is usually perpendlcular
to both the axis of rotation and the maghetic flux. Suppose the angular
speed of the boom is d*?/dt ¢ (Note: Ftom this point on, ¢ will be
used for the angular displacement of the seismometer, © for the galva-
nometer). The. velocity of the element is '

-G B)é

.where k is a. unlt vector parallel to the axis of rotation, ¢>k is the

angular ve1001ty, and R is the position vector from the plvot to ds.
By (13 2); the resulting electric field is :

T-Vx3B $@xi)xx
R — >

=c'}>[*§~k ¥ B-R)
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. T > ‘5 > >
(Note: 'In usual arrangement, RLB, Bllk so that e = Br¢ er, where R = reI->
The . voltage acfoss v is E?edg, so that the total voltage across the

‘terminals of the coil is T N - -
‘ E=§% a3 =¢¢ff K Ras - B'R‘kd:sj
coils coils )
The integral is a constant of the ihstrumént, depending only on the

geometry of the pendulum-and. the coil, and the flux density in the gap
of the magnet. This constént is the electrodynamic constant,  , of the

 seismeter, and , . ) N
E=r¢ v : o (15-1)

is the voltage developed by the transducer.

Exercigp:_aln the Galitzin transducer, Bllk, and on the average over the
coil, K1B. One side of each coil, approximately prallel to R, of lerigth
s, is in the gap of the magnet. ‘If the flux in the gap is uniform and
each of the four rectangular coils has W turns, show '

= 4BNSL, ,

Where Lc is the distance from the pivot to the center of the coil system.
This is the result given on p. 85 of Sohon. The minus sign there is
quite agbitrary. :

If the coil terminals are closed through an external circuit (that
.will include the galvanorme ter eventually), a current I will flow.  As
soon as I flows, a froce is exerted om €ach coil element, according to

(13-3):

.

-
Ids x B
‘The moment of this force about the pivot is
' = - = -
dM=R><(Idst)=I[B.=Rds-R'dsB:|

The moment about the axis of rotation is di:'¥, so that the total moment
about the. axis of ‘rotation: fesulting from the currént in the coil is

w=ba - % = 14 (B8 ¥ea? - ?.-ﬁ"ﬁ’sdé’] 4
coils
Cef I (15-2)

The electrodynamic constant, therefore, is both the voltage per unit
angular speed and the (negative) moment per unit current. The minus sign
in (15-2) simply meens that the moment is such as to oppose the displace-
ment that gave rise to the current. B '

Exercises Show that for a sg}sggmeter based on a system with translgtion,,
as in the figure,F‘T = 5;,,,1()( B.ds, where the output voltage is E =2,

k is a unit vector in the direction of translation, and zk is the relative
velocity of the coil with respect to.the magnet, If the coil -is'circular
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with radius r and the field is radial
and uniform over the coil, show that

Mp = 2 T rNB.

T77 T 9777 FJraadaryy

16. The electromagnetic seismographs equation of motion

(References:  Wenner, Research Paper No. 66, U.S. Bureau of Standards
Jour. of Res., Vol.L1929, pp. 963-999; Coulomb and Grenet, Annales de
Pysique, 11€ serie, Tome 3, 193%5; Grenet, Amnnales de Geophysigue, Tome 8,
1952; Eaton, J., "Theory of the Electromagnetic Seismograph", Bull. Seis.
Soc. Amer., Vol. 47, 1957, pp. 37-75)

SuppoSe the transducer and galvenometer are now conneéted through.
a resistive network, as shown in the figire. R is the total resistance

Seismo,

in the seismometer side of the circuit, including the internal resistance
of the coil, and Rg has the same meaning for the galvanometer branch of .
the circuit. S'is a shunt resistor. This circuit is guite general, and
allows for the insertion of demping resistors and attenuators between the
seismometer and the galvanometer. Call the curfent in the seismometer
coil I and in the galvanometer coil i. Then #the equations. of motion of
 the two components, for a pendulum-type seismometer with mechanical
‘damping coefficient D and restoring constant T, are C
L (using (15-2)) =
K&+ +Th = -Mrx - [T (16-1) .

Seismometers:

Galvencmeters: o (using (14-1) and

aésuming'thé'galvandmeter does not

. respond as a seismometer )
K,6 +ab+ 7o = ¥i ' o (16-2) .

‘}Apblyihg Kirchoff's laws to get'fhe diétributién_of current in’ the elementﬁ'
and summing the voltages in each loop, using (15-1) and (14-4) -

P - IR (I -1)8 =0

Y6 + iRg +(1-1)5=0
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Solving for I and i o .
T (Rg + S)r'- ¥'se
RRg + RS + RgS

- (R+.8)¥8 +rs$

RR
g + RS + RgS

. Foll‘owihg Wenner, we iet 'RRg + RS + RéS = Q2. . The moments.acting on the
two components as a result of these currents is . e

. Seismometer: i - oI = - Bg + 8 F'ZC'.P. . 32 rre
- Q2 S Q
L R+ S s -
Gelvanometer: My =yi=- ___"'___2{2 b —TyP
. QZ : QZ

_ Inserting these in (16-1) and (16-2), we obtain the equations of motion.

e . . R g . o :
Seismometer: K + (D + & ; m 2)52 +TPe - Mrit + —%m{é

or - P+ 2£WH<P +“ d,>= -z + Q2 r‘b’e : (;6—3)
Cvhere . 2Ray = D/K + (Rg + 5)/ka%M2

“’nz = T/X .

Ga}vanp@efer:- -K_l,e + (@ + _S;c';?_iy )8 + ,A'Qle = _aé_px_q;

or B Y 2Ry, 16 + g0 = ——— = %Y (16-4) .
as in (14-6) - (14-8).
These are the general operating equations of the Gal'itﬁin—type .
seismograph. Tdaken together, they enable us to go from the ground motion,
X, to the galvanometer deflection, 6. ' :

. Exercise: Let S go to infinity (no shunt) in (16-3) and (16-4) and write:
the equations for a directly conm‘ac‘ted,sei‘smome,tej-_agalvanome'te.r system. .
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. ' The right-hand 51de of (16-4) shows, how the galvanometer is drlven
by the seismometer. The coefficient of ¢ was named the transfer factor,
k , by Galitzin (originally for S = co). We note, however, that an
analogous term appears on the right-hand side of (16-3), a term that
shows how the oscillating galvanometer drives the seismometer. This
effect has been called the galvanometer "reaction", and w111 appear

" subsequently in the coupllng factor of ~the system.

If K is made 1arge and Ky smell, as in meny systems, the transfer
factor can be large and the reaction small, Galitzin assumed the reaction
was negligible, but we shall investigate this question more carefully.

We see also that the damping of both components can be controlled .
by the resistance in the circuit. In older designs, D was large, due.
to a damping vane, and external damping predominated in the seismometer.
In modern designs, the damping vane is ellmlnated, and damping both
components is due primarily to the currents in the circultsa

~Adopting the notation ‘of Coulomb and CGrenet, we write the total
damplng coefflclent of the pendulum as

A =D+ _____&S ng rlz; 2ifa)n =A/K',’
and of the galvanometer as . § = d + _ELi;EL,XZ 240 - S/K |
Q2 s l¥pl = 1
Now define ¢ g =l S/A W2; =o that rys/Ke° = oAy oG5 (16-6)
and 6g = 05/542,80 that Mes/K0? = 2816 = k, the
‘ " transfer factor" . (16-7)
The equations of motion become
Selsmometer. <1> + Z{Unq:o + @ 269‘ = - %[0 + 22y 6,0 (16-8) .

Galvanometer- b+ Zﬁl 2l o+ l 0= {fzhlﬁéi’ A . (16—9)'

'_ We eliminate ¢ between these equations by dlfferentlating (16—8) one tlme,

solving (16-9) for % , and differentiating to get $ and P ,and
substltutlng. Then multiplying through by ZKIthdg and collectlng

terms, we get the equation for the galvanometer in terms of ground motlon.

o 4 (Zﬁlwm + Zﬁﬂn)e (9 12 + 4{/{’1“’3{":11 +<n2 - 4ﬁ’1 n*{xldéo'g)e e

’ oy .
ceees (2{% S zf{lun%.)nl)e + oy 2« -egs -—g-lln—lﬁ‘é—yx- " (16-10)

' Since the trace is glven by 2A06 where Ay 18 the dlstance from’ the.
' galvanometer mlrror ‘to the record surface, (16 10) when multiplied. by
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24 is the differential e{quation. for the indicator. Letting multiplication -~

of differentiating operators mean successive differentiation, (16-10) can "
be factored '

a2 a \}2 d »-2] - 2 _d -~
b AW S w2 + 2wp] = + 9, - 4R =@ & ;
( . {n at n] 12 {'1 nl dtf nl 4 1“n*nl 152 .6. E

dt2

4w '
=-4 X (16711) ;

where s2 =05 Og . The only term in which the coupling between the
geismometer and galvanometer, or the "reaction term" appears in the

" indicator equation is the term involving & “- 0’2 is called the

coupling factor-

The steady-state response to simple harmonic ground motion is found
by putting x = Xce'’e”, letting 6 = 8oeivet and finding 8o so that
this is & solution. ©o will be a complex number, the modulus of which
gives the amplitude response, the argument of which gives the phase response.
The result, after some tedious algebra is . .

: o, @0
£80 - : i 2016 =5

Xo 2 ey ' ' : .
[ -2 SR -4#1(1-.;2)],“[2{1(:—;3 RCO

“°nl “nl “n

2k (ag% - :—f%l)] (16-12)

1201522

- ) \:(”e? _44)1.12)(«/92 -%12) - 4ﬁf\’_1“’n‘~’n1(i - 62)‘*’:] +.12w'e [{lunl'(ong -<2) + )

’{w;{( Ur?l—“‘oz)] (16-15)

_ Multiplying by the optical magnification, 2h,, the system response, from

ground motion to record, is . (-" 4)
ap Mo(é—) Ug e‘ z

= R
= [ W7 U]
where R and I are the real and imaginary. parts of the denominator

of (16-13), and ¢ = tan” Z/R - . The contribution. of + 7/2 to the
phase shift comes from the différentiation of the relative motion by the

C(614)

-transducer.

Hagiwara (Bull. Earthquake Research Institute, vol. 36, Part 2,
1958, 1%9-164) has ‘shown that (16-14) can be written in a form convenient -
for calibration of the system as the product of two factors, one involving
only the system constants, the other the frequency dependence. : )



a . . ) o o .
= =w.f R 0 (16-14a)
m o

where W = lir ( 2L) ( 2152, 515 f 15— , with
a1’ 1

n
Sl’ the sensitivity of the seismometer as a galvanometer

¢ - FTI%

Si: = T 2T fTAT&x

'Sz, the'sehsitivity of the galvanbmeter, including the optical magnification

S _
S, = 24, 9‘ =2Ao ¥ 244 Y nl"
i T 4 Ky

211, the resistance into which the transducer works, R in series with S
and Rg in parallel, - o -
Q¢

S+ Rg

211 =

fl., the attenuation factor, , with thé galvanometer clamped

’ S
1=
Re +S
. . M
Thus, W = — K = Zﬁl- nf§g~
. Aun Loy
: < e

The factor £ is ___““BL | yhere F(«}) is the modulus of the

FEe)

denominator of (16-12).

Exercise: Vrite out the modulus and argument of the denominator of
(16-13). Write the amplitude and phase responses of the system.

Exercise: From (16—12), write the velocity sensitivity, G/i, of the
system. Compare with equation (18) in Willmore. '

Ixercise: Find the amplitude response for62 = 1, the case of tight
Coupling. : :
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We note that the reaction of the galvanometer on the seismometer
appears only in the coupling factor €2 . The importance of _this )
reaction depends on the magnitude of € 2 relative to'l. 0 can } o
‘only be zero if &g is zero. ile evaluate this factor now. . Let the, part
of the damping factor that depends on the current in the circuit ‘be 1(/ s B
. so that A= £y + £« Then, for the seismometer ' ‘

okl -2, ;{’ Y“'n =.D/K‘+ (s + RgﬁQzﬁz

-Equating the expressions for the damping due to .current, and solving for
Kwn - : '

2K = 1 2(S + Rg)/vf/Q2

Then, from (16-6) €sg= LES . too. r¥s ._]L . Re
| @ R4 2 K [E(s+Re)
Ay s - '
= —/:,- ( S+ Be ) - .(16_143,)_, .

Z

A para.lle_l_deifivation for the galvanometer gives.

L . ‘Kll ‘ ,—' . S i - .-
€ g" R (———S " R) . (16-14p)
then'gz':ésgé =ﬁ'f, 52

-Kf’ ‘ (s+Rg) (S+R) v

| The coupling factor has the maximum value 1 if S is infinite (no

shunt) and all the damping of both components is due to current in the -
circuit. & 2 can be made small by meking 4/ or k;  small, or by meking
the shunt resistnance small. If the seismometer damping is achieved by

a damping vane , 80 that £ =~ Ro, with K very large, £’ will be small.

On the other hand, there is an advantage in eliminating the damping vane,
and controlling the -damping of the seismometer by the resistance it works
into. TIn that case, the coupling is made small by making S small compared
“to R and Rg. This measure also reduces &g, so that the sensistivity of
the system is lower than for a directly coupled system. The electrodynamic
constant of the seismometer transducer must then be big enough to yield

the necessary sensitivity. A system in which the coupling factor is made -
small by the use of a shunt is said to be decoupled, or loosely cgupled.

The system response, Equation (16-14), is symmetric in the constants
of the seismometer and galvanometer. A seismograph based on a deismometer
with a given damping and period, and a galvanometer with a given damping:
and -period- ¢an be: replaced by ome in which these constants are interchanged..
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. 17, ~Seismographs with zero coupling.

If 62 = 0 in (16-14), the magnification is given by
, s :

La

o

&2,

e

2h B X,

{[“) 2- “’nz)(‘o 2. «312) - 4K e 2]2 4”{32[ﬁ1”nl(”ﬁr‘.‘ «-.(%2.)4;

(a;( «/2)] }1/2

(17-1)

Factoring wg# out of the demominator, expanding, regrouping, and factoring

Lag o : 1 o
hyBxo | “o 1. %0 )2)2 4 (2R 2D . nl 212 2;1 7] 1/2
Zokro  “efln-2)7) - Ghag ]E 2)2 + (R 2]} )
- (17- 2)
Tlag ) :
' ‘ ~ /2. .
L RgEx {[(1-(T-> 2+ (zfi e ) }[14 )’>2+(2ﬁ Te)]}/ -
(17- 5)
T o
=& (1.7_4)
] .U T,
Exercise: Show that the phase 1a.g for 2 =0is ‘
‘e (3 ¥ 31 - 1r/2) o ('1 7-_5)_ o
where . © 5= ‘|e.oj~e=_ios', :e:;..' X fee}t}-;"-|’ S E SRR
N
1 T
4
§p = ten T —— =
S (=8 -
- Tal”

v
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As with the direct-recording seismograph, there is an arbitrary factor
of + 1, corresponding to an arbitrary shift by T ,in the specification,
of the phase, because the leads to the galvanometer can be connected in
one of two ways. The result above agrees with the convention used in the

World Wide Standard Seismograph network, for which the phase lag is
written as 3T/2 for Te = 0 and - T/2 (a phase lead) for Te—» .o .

The - phase relations in the electromagnetic seisxﬁograph,witHES2 =0
_can be derived directly from the equations of forced motion. If the
ground motion is Xo sin Wets the relative motion of the pendulum from

(7-11) is  Po( «,) sin Wet = § ), where »
: ' tan § = ;Ei_glfiﬁ__
1.- (Ue/“ﬁ)?

The voltage driving the galvanometer isj*%>= P“79<FOGOE) sin (@t + . S)
. 4 ) .

The driving moment is proportional to this volfage. The response of the
galvanometer is then : '

6o (“, ) sin (“’et + TT/Q -5=-8 1)1

6 (2, ) sin [ ot - ($ ;.5‘1 - nr/z)J :

6

]

where 6, (%) is given vy (16-14), and §1 has the form analogous to dJ.
See the figure, page Tl.

Bxercise: For T, = 30 secs, £ - 1.5, Ty1 = 100 secs, ﬁ-l =1, 62 =0,
~ find ‘the pﬁiie lag for.Te =.1, 30, 100, and 200 seconds. Sketch the phase
response curve for this- system. : o

k 17. 1 The Galitzin adjustment.

The original Galitzin electromagnetic seismograph was designed with
ﬁ?"ﬁ1=l, Tp =Tpy > 62=Q' In this case :

T=UL =1+ (_Te ) 2
: .

The magnification becomes

v - % . Ao K ¥ ( ' | Tq ~) 3 AGKT, Te/Tn -
o T T m ) TR [T
. n : ) )

(17-6)

Exercise: For the ideal Galitzin adjustment ' ' )

1) ~Show that V— 0 for both T, —» O and Tg —» «© , so that.noth high
frequency noise and the eifects of slow disturbances, such as tilts, are
eliminated. :
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- Phase lag relations in electromagnetic seismograph with &°= 0

we small, Te large : ~ We large, Te small

o - -1a're:r:n"'
g —l_ E

Z*J)d current leads ground

_§)<o current lags

(’yﬁ—-el ground”

oo

d, small B 7 I
lag is &~ - W5 (leads) B SV A A A

: [ large =7

7

- 72*{*‘{'_ . , ag is = 3W5 -
lt.‘— —;-tf—&?-—)le———?' “ lag is @1._2_ oy 3T :

-6
. |
k7 NA,
| ' ’ 2z 2.
x = Xpexp(iwel) S
6 =6, (Te)exs: {i( wel — o()}
tan p= —————— S tan C.‘:.___'_z..,_
“(Te/Ta) - 1 (Te/Tmi) ~ 1

. If use 94, d=(d+ d;=-"T% ), X varies from 37/2 at Te = O to -T/2 as
Te -» oo (WVSSN Vanual) o< d, I &T '
If use - 8 ,. X =-(J‘+J,+‘77/2'), but 0 »d, &/ 2> - , X varies ‘from

+7T/2 at Te = 0 to -37/2 as Te — o0 . ( Coulcmb any many others).
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2) Find the perlod for which the magnlflcatlon is a max1mum, and
evaluate this peak magnification.

3) Find the magnification for Te = T, and compare with the peak
magnification. ’ . :

4) Find the phase angle of the Galitzin at Te/Tn =1, and find » -
the value of Ty for which the phase shift is zero.. The result is the -~
same ‘as Fig. 18 in Coulomb, if 7 is substracted from the values for .
the phase lag ‘found here. (He chose to multiply .by =l, Pe 58).

"17.2 Approximate response curves for heavily damped systems, & ¢ = 0.’
(References P.L. Willmore, “Some Properties of Heavily Damped Electro-
magnetic Seismographs" Geophys. Jour. of Roy. Astro. Soc., Vol. 4 1961,
pp. 389-404.) -

We shall take advantage of the merits of worklng w1th veloc:1ty :
sensitivity rather than magnification, and the log-log presentatlon
discussed on page 35. From (16~ 12), since (x)max = iWgxgy, the ve1001ty
"serisitivity ‘with © ¢ = 0, can be wrltten

:eo/gsc)ﬁ .

- (2K Gg/‘&un) [2f) + i(We/&n] —a}nl/&/e))

[2{ + i Ue/éJn. &n ’Q/e))-l

¥ s

jWnUnIQK [2?€+ i .._..__,_)] [2{1 v (;'1 Av'nl ]

(17-17)

Using L = k/iir,

90,4 - zrrl SMr 1 ’ 1

(gm N K[q/n[zﬁL+ l(a)e Un )] L—Qfl +i ( ‘”nl)]

. (17-8)
Now. con31der the motion of ‘a rotational system 1(‘no’c necessarlly a seismo- .
meter or o‘alva.nometer drlven by & moment’ Moei®e .

K9+A9+’te '1et

5 s where ’

OO—NO/[('E .&2? + de A]

(e) ﬁ = it/eQo = MO/L—A + l[m K- -E/ ]]
o /(8)g

A+ l{weK - T/“)e] - (i7-9_)l_

2ﬁldn + 1[4} K - Kldn /&/eJ '

» *Ké/nf2ﬁ+ i (&/ e/é/n - a/n/az e)] (17-10)
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The ratio of the driving moment to the angular velocity it produces,
(17-9) is called the mechanical impedance of the system: 4 :

Zpech = Mo/(é) m

The regponse of any 31mple viscously damped 0301llator .can be expressed

in the form
6p = Mo/Znech

8, 'is a complex number that includes the ﬁhase imermation.

. Exercise: Derlve the mechanlcal impedance of a mass-sprlng-dashpot system
driven by £(t) = Fg ei“et, :

Thus, the velocity response of the seismograph, (17-8), can be written -
as the product of the velocity responses of two simple oscillatorss

6 am  ¥DS | . ‘ (1%41)»:A
(F)m  Zseis Q%Zgaly '

. From page 35 we know that the velocity sensitivity always peaks at

“% “%n = 1, is symmetric about this value of ?g/ ns the peak value is

nSp/Vo = 1/2ﬁ s and the curve is asymptotlc to a line. with slope + 1

" at low frequencies, -1 at hlgh frequencles.
10

A
WS
Vo[

OTer 7 i 100

From thé figure, for X>0.5, a horizontal line through the peak response

cuts the asymptotes at two values of the frequency ration, 1/2{ gnd 2% .
Compare Fig, 2 in Wlllmore, 1960. If the damping is high, say critical .

or greater, the response can be reasonably well approximated by three'
straight line segments. The velocity sensitiv1ty along the segment with
slope +1, and the magnlflcatlon is constant along the segment with: slope -
-1,  Because of the symmetry of the veloc1ty response the shape of the
curve is’ unchanged if Te/Tn is used. instead of the frequency ratio. .
However, in this case, the curves of constant magnlflcatlon and accele—,_fﬁ
~ration sen31tivity are . reversed, i.eoy. magnlflcatlon is"c¢onstant along. .

the -curve with’ slope + 1s (The ‘abscissae on Fig. 3, Wlllmore, 1961, are

- mislabelled, should be relatlve period:

o We can now apply this approach to (17 ll), and use the fact that A. .
'Aalgebraic multlplicatlon 1s equlvalent to addlng logarithms of the factors.
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Given the period and damping (assumed fairly heavy) of both the seismo-
meter and galvanometer, we plot approximate response curves for each,
and then simply add them, graphically, to get tne system response. The
factors involving the constants of the system My, v, [, etc.) only affect -
the level of the response, not the shape.. They must be adjusted, of
course, to get the desired peak magnification.

. "If it is desired to estimate the numerical value of'the reséonse
‘from given system constants, (17-11) must first be multiplied by 2Ag,
and, using a = ZAOGm, the velocity response, as recorded, is .

8 Mr - 2ho¥lS

%,  Zseis 42 - Zgalv . ' | (17-11a)

Rewriting (17-10)

ém = MO | = MO . ) 1

Zmecn . Sn pfy g (Yel Zny
| P

“e

P S TG D)
" Kan i(zf;g_)z 4 [(egg)z ;‘1] 2}1/2.
. . L n Wn . ) T .

R
{p- ] ok )’2}1( ¢

e - . : .
which is the same expression as nS in (7-14&) with peak value _z%cf'

: Vo.
@ . . _ - . ,
. at Z;%' - 1. Therefore a log-log plot of Oy has the same properties
as a:similar plot of S; with peak value‘ofi Moi‘ : 1 gt e ;»1.v
o S kem 2k
Therefore.the first factor in (17-1lla eaks at - - at &/, =4
. e ( 7 ) p-_ - . Z{IWHK :_.e - nv:?

the second at 2AoS/2%4 4/ nl Ky (? = 2hok / K% = 240 Ggy 8t We = wnl.
' Given the instrinsic constants of -the system, one can calculate .
these factors, and their product is the peak velocity sensitivity. - Knowing. -

this value and the shape of the. curve from the procedure discuSSed‘above;.:-$:-'

the approximate velocity sensitivity curve can be plotted,. and. the magni- .
fication curve derived from it if desired. B Co . o

_Fo;cvexau'npl'e',__]-.etrT.n = 30 secs,‘ﬁ = 1.511Tn1';1;oovsecg;_4{1 = 1. .
The approximate velocity response curve is shown ‘in the firure.. In the - -

lower. part of the figure, the curve has been.replotted.as a magnification’ R

curve with the peak set gt'3QOO{V'The haghiiipatioﬁ cﬁryé~er ‘the long - -
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period seismograph used in the YWW35L, which has approximately these
constants, is also shown. The method is certalnly not exact, especially
for damping as low as that in this example, but it does give a good
indication of the shape of the curve. The errors in the method are
discussed in detail by willmore, 1961.

Exercise: Show that the same response curve could be achieved with
Tn = 67 secs, X = 0. 671, Tnl = 44.7 secs, Rl = 2. 23%6. Is trnis a
practical design for achieving tbls response curve?. .

Exercise. Find the approximate response curve, and designate the frequency:
ange in which the magnification is constant, and the one in which the
ve1001ty sensitivity is constant for the f0110w1ng system (Antune, 1950):

T,= 20, A=0.5, Tyl =1,%, =10, Repeat for K = 0,707,

18. Seismographs with arbitrary coupling.

18, 1. Introductlon of dlmen31on1esu time varlable.'

Wie return to ejuations (16<3), (16-4) and (16-10) to 1nvest1gate
the response with arbitrary coupling. Following Coulomb and Grenet
(also see Baton, 1957, and Willmore, 1961) we first sim,1ify the equations -
.by changing to a dimensionless time variable. Let e« = =/¢h4ﬁ1{ and let
T =%, Further, let df/dT = f’. Then, dff/dth = (/)0 ghf/add. ‘
Define =/wh7‘0n1 =ah /e = WI/Unl; a dimensionless angular
frequency. The seismometer equation, (16-3), becomes

2

12 it ‘b 2. ” =)
3 ¢+.2f@r'lw¢ +@ P =-_(:)€., % v ofnGs w8

or ¢+ 2R £2¢ - X 2lpse! (18-1)
similarly, for the galvanometer
’e+ M, e _ oK, . X
77 "5y ~(18-2)

- The indicator equetion becomes:

g(iV) '4 ((__}é . ng)em + (52,

+ 2 4 4y (1-62)6"s 2(; +f1f>9 ¥ é :%’%6&- ="

: L (18-3)
or - i
~(1v)
. B
) " Coulomb and Grenet demenstrate that by adjusting the coupllng, 2,
an infinite number of sei m05ra0hs, all with the same respinse curve,
can be designed,. at least tueoretically. The shape of the response curve
is determined by A, B, and C, i fixes the absolute level of the magni-
fication. kxpressing ﬁ and My in térms of A and C, and substituting
in B: - . .

+ 48" 4 30" 08’ + 0 - m v »(18-4)‘




- 77 -

5= (724 £72) + (1 -52) [(Ph - ¢/5)(§C - A/PUS? - $-2)2

et (p2+572) = (/%) +<m/4) =¥ -
Boa+ (1-o2)[F20 - 42 -2+ ac/$2] /(a2 - 4)

’ (a° - 4)(a - B) + (1 -62) ac(a - A/C - c/A) =0

Suppose A, B, C are fixed, thereby fixing the response curve. Then,
for any value of & 2, which has been shown to be between O and 1, this
cubic equation in "a' has one or three real roots. Bach root fixes two

~values of “,/*»1 that are reciprocals of each other, corresponding to
the fact the constants 'of the seismometer and galvanometer can be inter-
changed without changing the response. Thus

) = a/2 + [(a/2)2 - 1

The case fore? = 0, the decoupled system, is only one of an infinity
of equivalent seismographs. Decoupling offers some practical advantages,
especially the possibility of designing a resistive network that can be
inserted between the two components to act as a damping control and at -
the same time a step attenuator that will not change the damping of either
component. o :

18, 2 Laplace transformation of the equations (Reier: Eaton, 1957).

Let & (s) = ,Z(cp('c)] = ﬁ_SZqD(T)d‘C , with similar definitions
for @ (s) and X(s). Let the angul;r'displacements and velocities of the
seismometer and galvanometer at -T = 0 be ¢$(0), $'(0), o(0), 6(0).

From (18-1), :

(s2 + 28ps +£2) & (s) =4(0) + (s + 2€p ) $(0) - 2hpgs 0 (0)
+2%p 68 ® (s) (1/0)|s%(s) - sx(0) - x’(O)](lB-S)
From (18-2) ‘ : ) :

(w290 + 1/3 D)@ (o) = H0) + (s + 2y/p) 6(0)
- f /96 $(0) + 2({1/g6,58 (s) | (18-6)

Solving for & (s) and @ (s),
transform of seismometer response to x(t):

[(s + ?ﬁ% s+ 1 )(s + 2£) - 47162 (0) + (2 + 2:@—5 + L)o@ -
| - 3(s) | -

B(s) -

—:%fese(o) + 2fféssé'(o)- %(s2 + 25%&: #)[s%(s) - sx(0) - 2(0)]
2 -
(16-7)
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"transform of galvanometer response:

Os) = [(sz + Qﬁfs +§2)(s ; 25%g _‘4ﬁf%5§s]e(o) + (5%2{f5+5>2) 6(0)
. 2 (s

i

2o (0) + Zﬁ'}* cgs$(0) - %2%6“gs[s?x(s) - sx(0) - %(0)

e "(18-8)
where 2 (s) = (52 + Qﬁfsl+f 2)(82 + 2 é}s + %2) - 4ffi52s2 (18-9)

-Equation'(18-6) is the solution of the problem for arbitrary coupling,
arbitrary initial conditions, and arbitrary ground excitation (as long as
X(s) exists). The major task of finding 6(7) =jf_'1 [@(s)] remains.
Before examining that Question, we can write the transform of the solution
for someé inputs of interest. For example, the solution for a sinusoidal
ground motion that begins suddenly from a condition of rest is:

ﬂt)=xo'anz,zzo

=0 ,’C(O

X(S) = Xow/(82 +¢o2)

(Note:wz=wet, so that«’, =ak), or Te = [Tl /w)
Initial conditions are: x(0) =4(0) = 6(0) = (0) = 0; x/(0) = @xg,
$'(0) = -x"(0)/4 = ~wxo/¥ . Substituting in (18-6), the harmonic
response for arbitrary coupling is .

(SA),(Zfl/f)O-gs( ‘k)xo/ﬁ ) - l/l(Zﬂl//’)Ggs) [Xo “-”52/'(52 +w2)‘—w.x0]
| | YOI
'A2(16gwxo )

Vi | ( (82 +02) 9, (s)

) . | (18-10)

A test formerly used for calibration of electromagnetic seismographs

in the "tapping test". A tap of very short duration relative to T, is
given to the pendulum, giving it an initial velocity. The resulting
amplitude of the pendulum motion and the response of the galvancmeter
are observed. From the data, the transfer factor of the transduéer,.and
thus the magnification can be claculated. The conditions ares -

x(t) = x(b) ='x>(O> =0 (ground at rest)
$(0) |
- 9(0) # 0

1]

6(0) =8'(0) =0
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The motion of the seismometer is the inverse transform of

B (s) = 52+ 2Ra/ps + 1/ 2) ¢(0)
' 2 (s)

”(18-11)

and the galvanometer

(2f1/ﬁ§os ¢’ (0)

 (s)

®(S) (18-;2?

Other standard tests may be treated in a similar way.

Exercise: Let X(s) = 1 in (18-6), with x(0) = x'(0) = ¢(0) = &/ (0)
=9 (0) =8'(0) = 0. The corresponding x(z) = §(0), the dirac delta
function. The resulting G(t) is the impulse response of the system.

Find ®(s), and show that @(i«g,) with «, § replaced in terms of w,.
¢, and«np], is exactly the steady-state harmonic response given by
(16-12). Since ®(i%s) is the Fourier transform of 6(t), this result
demonstrates that the Fourier transform of the impulse response is the
steady-state harmonic response, including both amplitude and phase
responses. ThlS point will be taken up again when calibration methods
are discussed.

The evalualion of the inverse transform to find G(I) by the
H aviside partial fractions technlque (see Appendix 18-1) is stralghtforward
if the linear factors of 2 (s) are known. But 2(s) is a fourth degree
equation, and.its general solution is difficult to find. The problem
is easy if 6§ ° = 0, and we have esbentlally done this case for simple
harmonic ground motlon in deriving (17 1). e did not, howéver, write
out the transient paxt of the solution, which we would.find if we put
6 2= 0 in (18-8) and solved for the inverse transform. The transient
term. come fron the zeros of 2 (s), the steady-state terms from the
zeros of the dencminator of X(s).

If we expand Q.( ) in (18-7), we flnﬁ that it is exactly the left
h%nd side of (18-4), the 1ndlcator equation, if we replace (d/dt by -

s S
;(s) = st + s + B2 4 Cs 4.1 (18-13)

"Coulomb and: Grenet pointed ocut that this polynomial can be simplified,
and the zeros found easily for the special case A = C. Physically this
means that : ’

| 2(hi/ ¢ +f€) =208 /p + 81 7)
or. ('< “fl)(f"l/f)=

so that the simplification is achieved if either(ﬁ = *Ql-or @, =y
Thus, if we are willing to adjust the seismograph so that either the two
components are equally damped, or the two periods .are ecual, we can
31mp11fy the expression for 2 (s). (Notea In the ideal Galitzin, for
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example, both of these conditions are satisfied, as well'as GJZ =0.)
with & (s) = 34 + As + Bs® + As + 1, we ﬁish to solve
(5% + 1/32) +A(s +1/s) +B=0
Following Eatoﬁ, we change variables, letting s + 1/s = Z, so that

s 4 l/s? - %° - 2. The equation to be solved is

2° + AZ + B - 2 =0

which can be handled by the quadratic formula.

Eaton presents the roots of this equation, and the.corresponding
value of s for the two cases, h =Hh1 and @ =%n1. With the linear
factors of 3 (s) known, he then proceeds to-find the inverse transforms

- of ‘expressions like (18-8), (18-9), and (18-10) for a variety .of inputs,
and for components that are overdamped, critically demped, and underdamped.

Thus, in principle, (18-6) gives the system response for the most
general case, but the actual time history of the response for arbitrary
_inputs is not so easy to obtain for the general case. However, the chief

reason for wanting to be able to find O(t) for a variety of inputs has
been to make the interpretation of standardized calibration tests possible.
We see from Haton's results that it can only be done at present if special
choices of the instrument constants are made. In recent years, -calibration,
techniques have been developed which are quite general and which test the
system response as a whole rather than ‘depending on the determination of

intrinsic constants of the seismometer and galvanometer and the subsequent

calculation of the response. Thus the need for special adjustments to
make calibration possible no longer exists, and completely arbitrary -
combinations of natural periods, damping factors, and coupling can be
used if a particular response curve is desired, It is desirable in the
design stage of a new instrument to be able to predict the response, and
this can be done by assigning numerical values to A, B, C in (18-11),
and then finding to zéro of 2 (s) by algebraic or numerical techniques.
It is much more likely that a designer will depend on his experience to
get him close to the desired response, and then adjust the parmeters

in a prototype until he is satisfied.

Exercise: Given the [ollowing constants of a seismograph system (all
units are c.g.s.).- : .
’ .- . Seismometer: Galvanometer:

M = 500 gm K = 1.62

K = 2,5 x 109 d = .05

Mr = 104 T1 = .318

Ty = 12,59 ¥ = 6.23 x 102
T = 6.25 x 104 Rg = 1010

D = 2.5 x 103 Ao = 100 cm
rm=1.87 x 108 ;

R = 4.1 x 1010 (abohms)

- s =8.2x 1010
Fir'ld: Tnis -iosfgly 2“0 » 2ﬁl“'/nl: [ ,67’, 6 -2’ £, ;
Write the expression for %he steady~-state haPmonic response. and find
“the magnification at Tg = 6.28%, 12.56°. o

R
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Appendix 18-A""

The Heaviside Partial Fractions Expansion to obtain the Inverse
Laplace Transform. '

If F(. &f[}(t ] = p(s)/q(s), were D, q‘are polynomials, g of .
hlgher degree than P:

1. If (s - a) is a distinet linear factor of q(s), and if
¢ (s) = (s - a) F(s), the factor contrlbutes a term to the
inverse transform = ¢ (a)e &b,
2, If (s -a) is re.eated r times, and 4>( ) = (s - a)TF(s), the
. contribution to the inverse transform is

. ) ot i dP(J:' -n) (a) t(n.-_].)

n=1 (r-n)! (n=1)1

; where ¢(m) = dm¢y Atm.

For r = 2, the contrioution is e **[$(a)t + ¢ (a)]

5, If [ (s + b)%]is a distinct quadratlc factor of q (s),

$ (s) = (s+b)2+a2 F(s ,and?(b+1a)-¢1+t<l>2,
the factor contributes the following to the inverse transform

l/a e bt (@, cos at + $1 sin at)
4. If F(s) = ¢(s)/ [(s+D)% + 82]2, and $(-b + ia) =¢1 + iPo;
q?( -b + ia) -?3 + 1¢ 4, the repeated factor contributes
(1/233)e-b1‘ [(4;2_ 3<P3) cos at + (P + a€}>4) sin at
+at (§, sin at "¢‘1 cos at)]
(end of Appendix)

19.. Au.x:.llary galvanometers as band-rejection filters (Reference. Pomeroy
and Sutton, Bull., Seis. S0C. Amer.,. Vol. 50, 1960, pp. 135- 154)

Following upon previous work by Grenet and by Desvaux, Pomeroy and
Sutton have investigated the use of a second galvanometer in the circuit
as a mechanical filter for rejecting a selected frequency band. Their
purpose .was to develop a means of eliminating the energy in the 4-10 second
microseism band from high-sensitivity, long period records. They show
that if a lightly-damped galvanometer with natural frequency at the center
of the band to be rejected is .inserted in the circuit, a sharp notch is
" formed in the response curve at this frequency, but the curve is not too
badly distorted at other frequencies. The width of this notch can be
varied by changing the damping of the filter galvanometer; the higher
its damping, the wider the notch.

The method works because the filter galvanometer itself executes
very large motion at its resonant frequency. The energy in the signal
in the neighborhood of this frequency is effectively absorbed by the
filter galvanometer, -so that the recording &alvanometer doesn't see it.

Pomeroy and Sutton present results for systems imp which the seismo-
meter and two galvanometers are tightly coupled in a single series
circuit, and well as systems in which the seismometer and filter galvano-
meter are tightly coupled, but the recording galvanometer découpled, and
the filter and recording galvanometers tightly coupled to each other,
but decoupled from the seismometer. In all cases, a notch is formed at
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the filter galvanometer frequency. The ‘response curve is smoother for
the recording galvanometer cecoupled from the seismometer for either ,

" position of the filter galvanometer, or for no filter galvanometer. They
present records for the tightly coupled system which demontrate beyond
question the efficiency of their technique. A copy of their records is -
shown in the figure above. :

The presence of the filter galvanometer badly distorts the phase
response curve in the neighborhood of the rejected frequency band, but.
leaves it relatively undisturbed otherwise. The instruments are used .
mainly to record long-period surface waves, for which accurate phase -
shift information is essential. At these periods a ‘reasonably accurate
phase shift correction can be made. ' )
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20. The Variable Reluctance (Benioff) Transducer (References: Benioff,
H., Bull. Seis. Soc. Amer., Vol. 22, 1932, pp. 155- 169; Bullard, E.C.,
‘Mon. Not., Bﬂx. Astro. Soc. s Geophyso Suppl., Vol. 4, 1938, pp. 336-340;
Devlln, n, J. Jey Bull. Seis. Soc. Amer., Vol. 28, 1938, pp. 255 -258; Byerly,
P., Seismology, . 1942, pp. 140-143; Willmore, 1960 PP 248 252)

Another way using the principle of electromagnetlc induction to
build a transducer in employed in the variable reluctance transducer.
Rather than use the relative motion between a conductor and a fixed magretic
field, this transducer works by the change of the total flux in a magnetic
circuit. Two air gaps that change length with the relative motion are
part of the circuit, and changes in the length of.these gaps' change the
reluctance of the circuit. This type of transducer is usually called a.
Benioff transducer because, although heé did not invent the device, H.
Benioff first designed a very successful

"to main mass
_seismograph incorporating it, an instru-

and spri .
_,ﬁ"ng ) ment now used world-wide.
' In the vertical component Benioff,
,Armatéfq'(((( a translating mass on a spring, the
9 L I kH armature and coil assembly is fastened
P. M. to the suspended mass. A permanent
¢ ’ magnet is fixed to the instrument frame.
...... AN D S Only one armature was used in the
TR , . . original design, but this led to non-
T Arma@(ﬁ%lf(( linearities which are eliminated by

using two, one each side of ‘the permanent
‘ - magnet. In the horizontal component

Benioff, the assembly is in the center of the moving mass, which also-moves
~in translatlon .on an elastic suspension. .

The flux in a magnetic circuit is equal to the magnetomotive
force. of the magnet divided by the relucta ce of the circuit;-

_ _m.m.f
9b - relﬂctance

analogous to Ohm's law for an electrlcal clrcult. The reluctance of
a magnetic path is :

L
reluctance = £ = _/_;T—
when.lals the length of the pathj;fs the permeability of the materlal,
and A, the cross-sectional area.

The permeability of the permanent magnet and the armature cores is
very high compared to the permeability of air (Ca..lO4 $ 1), so.the reluc-
tance of the magnetic chrcuit is dominated by the air gaps. Considering
only one branch of the clrcult, and neglectlng the reluctance of the .
magnet and armature core .

m.mof. = 2<PR ,

. where ¢>1s the flux, R 1is the reluctance of each air gap. Since maﬁ,f.
is constant ,
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_ papR +Rdp =0
or d¢ = - pdR /R
Since R = L/A (,ﬁ4’”'l for air), d¢ = - ?22 s is length of

gap, A its cross-section. The change in gap length, 4 JZ, is dz for the
lower circuit, and -dz for the upper circuit for dz positive downward.

The‘forces acting on the mass, in addition to the usual spring
force and force of mechanical damping, are a magnetlc force due to induced
magnetlsm in the cross and electromagnetic force due to the current in
the circuit. The equatlon of relative motion for the double-armature
system (see Byerly, 1942, or Willmore, 1960) is

d z c_ dz - k- k' '2¢1n R d"x
+ —_— (= - =)z + —=—1i = -
142 M dt MM Al 342

- where z, X, ¢, M, k are as before.

B i = total flux in the magnet at rest position.'
2
P
Ae
L = inductanceAQf coils, assuming no leakage flux.
n = number of turns on coils.
i:

current in coils.

‘The term in k' is the acceleration of the suspended mass because
of magnetic attraction between the two sides of the gaps. It appear
as a negative spring constant. The term involving i is the acceleration
resulting from the flux generated by current flow in the coil.

The output of the transducer with the coil circuit open is found :
by evaluating E = - n d ¢/dt -n (d¢/az) (dz/dt) - The coefficient -n dp/dz
is a constant of ‘the transducer, which, from an ana1y51s of division of -
flux in the c1rcu1t turns out to be
Pn

Y]
[o]

for each armature, or, if two coils are connected in series addings;

9bm © 4z

E’“n[o it

=/7 3z

- where /7 is the electrodynamlc constant of the variable reluctance trans—
ducer, and 4{ is the length of the gap at rest. :

As soon as the circuit is closed and a time-varying current begins to
flow, an additional voltage L di/dt is generated, so that the total voltage
at the coil terminals, is E/3 dz/dt + L di/dt. The voltage resulting
from the inductance modifies the behaVJOr considerably, especially at high
frequencies, and the analy51s becomes more complicated, Sparks and
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Hawley (Geophysics, Vol. 4, 1939) have analyzed the motion including
the induictance term, but not the galvanometer reaction. For a discussion
of the effect of the 1nductance term see Willmore, 1960, pp. 250-252.

Savill, Carpenter, and Wright (Geophysical Jour. Vol. 6, No. 4, 1962
pp. 409- L25) have derived equations parallel to those in Sectlon 16,
but including the effect of the inductance of the transducer coil. They
have solved the resulting fifth order differential equation for € in .
terms of x - by means of an analogué computer for a Benioff (hlgh 1nductance)
seismograph, and.a Willmore (low inductance) seismograph. They conclude:
that the inductance of the Benioff produces a sharper high frequency cutoff: .
“and a longer rise time of the transient response. This leads to a reduction - -
of the amplitude of the first motion on the record. :

' 21, Calibration of eleptromagnetic seismographs.

(References: Byerly, P., Seismology, 1942, pp. 136-140: Willmore,P.L.,
"Bull. Seis. Soc. Amer., Vol. 49, 1959, pp. 99-114: Espinosa, A. F., Sutton,
G.H., Miller, H.J., Bull.. Seis. Soc. Amer., Vol. 52, 1962, pp. 767-ff;
The Geotechnical Corporatlon, Operatlon and Maintenance Manual, World-
Wide Seismograph System, Model 10700, April 1962).

One of the most important advances in seismology during the last

decade has been the establishement of a network of calibrated seismographs
over much of the world. Prior to this time seismologists worked almost ’
exclusively with the times of arrival of events and could do little with
amplitude data. Yet information about some of the most challenging problems
in seismology, such as focal mechaniems of earthquakes, inelastic properties -
of earth materials, and details of earth structure (Low-velocity layers, etc.)
is contained in the amplitude of seismic waves incident on the surface.
Precise work on surface-wave dispersion requires knowledge of the phase
‘ response of the instruments. Methods of calibraticon have been. known for

a long time: the problem has been to devise techniques of applying the
known methods that could be applied routlnely in the field by personnel’

with minimum tralnlng. .

Calibration means the determination of the amplitude and phase response
of the complete seismograph system. If the steady-state harmonic response
is known over the whole frequency band, the ground motion giving rise to
any waveform on the record can be determined. Conversely, as will be seen
below, if the response to any known. ground motion with a continuous spectrum
is observed, the steady—state response can be ‘derived.

21. 1 The transfer function.

Given a linear differential -equation with constant coefficients

(a'ODn +ee oo ta D +e)u= (k) (21-1)
then . BoS Foee e e e o F A, 1854 8, 04is the characteristic
equation.
Y(s) = L : - is called

a8 + oo o o+ 2, + a
o 1s n
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the transfer function of the differential equation. An important property-'
of the transfer function is that if f£(t) = Ael®’t, A constant, w real,

iwt

u(t) = Y(iw )he (21-2)
is a particular solution of the diffe:ential-équatioh, provided (i«)) is
not a.root of the characteristic equation. This can be verified by substi-
tution. S

. 5 . . . 3 ( e N
Ir A = Re® is the input amplitude, so that £(t) = Rel( E *"“), R,
&, real, the output is |Y(iw)| RelP +X + Y ) vy isa
- frequency-dependent amplification factor that we have called the amplitude
response of the system described by the differential equation, and
Y= arg,Y(i«)) gives the phase response. '

Let U(w) be the Fourier transform of u(t),
.o :

U(ew) = 1 S u(t).e'.“iw‘ t'dt' : (21-3a)
J2m o :
- 1 o it ~ _
p(t) = 3 Tw)e dew (21-3Db)

/em o

It can be shown that the Fourier transform of dku/dtk'is equal to
(ie )k +times the Fourier transform of u. Applying this.to the original
differential equation (21-1), with F(<¢) the Fourier transform of f(t)

(3, (1) + “eerereees a3 (i0) + a)U(w) = ()

;
y(w :
or (i = F(«)
e it
so that alt) = 1 5 | Y(iu))F(au)e . »
ex: :
. -l

This says that each frequency in the input, with amplitude and phase
given by F(a))dcd comes through the system multipleid by the value of
the transfer function at that frequency, Y(i«v), and the total output is
the synthesis of all these frequency components.

Suppose we observe the output u(t) for a known input £(t). Then
the harmonic response function can be calculated by dividing the Fourier
transform of the. output by the_Fourier transform of the input

U(e

Y(lé‘)) ="F -

(21-4)
The nature of f(t) is not particularly important, except that F(w) musf
exist and should contain all frequencies in the .pass band of the system

described by (21-1), and it is sensible to choose f(t) so that F(«’) is
.easy to calculate. '
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In this approach to determining the response of a system, sometimes
called the "black box" approach, no attention is paid to the details of
what goes on inside the systemy It is only necessary that the system
be linear, so that it can be described by (21-1) and  the superpos1t10n
called for in (21-3b) is valid. - .

21, 2 ‘Pulse callbratlon of a seismograph.

In the case of a seismograph, the straightforward way to apply (21-4)
would be to give a knowh displacement to the frame of the seismometer.
This can be done if a suitable seismographic shake- table system is
available, as discussed in Section 12.21, and if the seismograph 1s of
a type that can be moved around without changlng its properties.

The most simple input is a unit impulse in ground displaecement, so
that x(t) = § (0), X(i« ) = 1. The Fourier transform of the response
to this impulse is then directly the harmonic-displacement response of
. the system. This was arrived at in a different way in the exercise on
pages 107-108, where the equality between the Laplace transform with (iw)
as the transform variable and the Fourier transform for functions that
are equal to zero for negative time was used. Unfortunately, this test
is not usually practical, because there is no convenlent _way ‘of providing
this excitation.

An alternative is to provide an excitation of the inertial member
of the seismometer system, whether a translating mass or a pendulum.
It has been shown earlier that a ground acceleration ¥ applied to the
frame of a system with translation produces the same relative motion as
the motion produced by a force - Mk applied to the mass with the frame
at rest. Similarly, for a rotating system, the acceleration X of the
frame is equivalent, for relative motion, to a force -M¥ applied at the
center of mass. Such tests as the tapping, release, and displacement
tests (see Eaton, pp. 49=52) drive the inertial member by mechanical
means. However, one can use the transducer in the seismometer as a
means of driving it. Suppose the electrodynamic- constant of the coil
"~ is known. If a current flows in the transducer coil, a moment -/_I acts
in the case of a hinged system, or a force =/l in the case of the trans-
lating mass. In either case the waveform of the current corresponds to
the waveform of an equivalent ground acceleratlon, th/Mr for a hinged
system, as in (16 1), or/ﬁ I/M for a translating system, as in the
Benioff equation, Section 3 The corresponding output can be treated
as in the previous section to get the acceleration response of the system.
This, in turn can be converted to the magnification curve, or displacement
response, ‘by multiplying byee , and addlng T to the phase angles Even
if Mis not known, ' thls procedure will yield the relative magnlficatlon
curve.

It is necessary to apply the current to the coil in such a way thet
the galvanometer is not driven directly by the test .signal. This can be
done by inserting the seismometer and galvanometer in an impedance bridgey
as will be discussed in detail below. The bridge is balanced so that
the application of the test current with the seismometer clamped does
not result in any deflection of the galvanometer. Of course, it is
_possible to provide the seismometer with a separate calibrating coil,
independent of the galvanometer circuit, with known electrodynamic’
constant. Either means of driving the seismometer electrically provides
a method for remote calibration when needed, as in bore-hole seismometers
and. other appllcatlons in which the detector 1s not easily accessible.
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The method is not actually as good as tests which drive the frame.
The assumption is made that the frame and supporting members act in a
perfectly rigid manner. Pulse calibration on a ‘shake-table will bring
out departures from ideal behavior, whereas tests in which the inertial
member is driven may not.

In this method we again choose an input with a known Fourier trans-
form. A current pulse is not generated as easily as a current step,
although it can be obtained if desired. A step in current is easily
applied by connecting a dry-cell to the coil (assuming the inductance
is not too high), a matter of closing a switch. The transform of a unit
~ step function is F(«) = T%J , S0 that the transform of the output of
the galvanometer for this input must be. multlpllnd by «w and'H/Z added
to the phase, to get the acceleration response. Comparison of results
obtained for a current pulse, a current step, and a sine-wave input is
presented by Pomeroy and Sutton.

It is necessary to know /" or /'R , the electrodynamic oonstant of
the transducer or calibrating coil, to get an absolgte calibration. One’
way. of determining this is by observing the damping factor of the seismo-
meter with open circuit and with a closed circuit with resistance R,
1nclud1ng the transducer coil resistance. For a hinged sistem, the contri-
bution of the current to the total damping moment is ["R 7VR and ‘

2{w=2{w+r£ ,

o that . "/’RZ =2wn'({._=;f;)KR,.

For a translating system, M réplaces K, and fb replacés fh.

An alternate way of determining /7 is to compare the effects of a
step in current with the effect of a step in force applied to the inertial
member. A step in force is generated most easily by the "welghtasnatch"
technlque, in which a test weight is applied in such a way as to produce
- @ static displacement, and then is removed quickly. Consider a vertical
component seismometer based on a translating mass. The removal of the
test weight, mg, is equivalent to a step in force in the direction of .
" sensitivity. But a calibration current step also is equivalent to a step
in force.. If the two forces are equal,. be = mg. In general, they will.
" not be equal but the responses of the system will have the same shape,
with only the levels different, Suppose the first peak of the response
transient is read from the seismogram for the two kinds.of experiments,
ay corresponding to the weight sratch, ag correspondlng to the curfent
step. Then, for a trans]atlng system :

on _ g . or '[ﬂ _ Qg B
a; f&I ! T I a

m
and the electrodynamic'constant is determined ffom easily observable
gquantities.

In the case of a pendulum system, the test weight must be arranged
to apply a moment mgd about the axis of rotation. Then, [7RI = mgd
for equal inputs, or if the 1nputs are different - .



m__ mgd . ro- mgd 1 ,
aI rhI R I am

where again ap and ay are corresponding amplitudes, most conveniently the
first peak of the transient response in the two tests. With reference
"to the WWSSN' manual, equation 10, page 10 of Appendix A, 'E; = gcdc’
and G, ¥ =pn /r for the rotational system.

Question. Why is a Welght snatch preferable to the sudden addition of
a test mass?

21. 3 Sine-wave callbratlong

The main dlfflculty with the pulse calibration technique is the
necessity of determining the Fourier transform of the output in order to
get the whole response curve. For this reason, the chief application has
been to the determination of the response at only one frequency .in order
to set the level of the response curve, with the assumption that the shape
of the curve is known from the design constnants, Thos Tnl f , ‘ﬂl and

2, The height of the output peak alone is enough to set the magnlflca-
tion at one frequency. The only use usually made of the calibration pulses
put on records twice a day is to provide a gquick check on the opefation,

- of the instrument. A marked change in either the height or shape of the
pulse is an easily detectable signal that something has happened to the
1nstrument.

Thus pulse calibration is easy to do, but requires time and computing
facilities to interpret. On the other hand, a sine-wave calibration of
the system over the whole pass band takes much more time, but requires no.
further interpretation. If the input is a continuous sine wave, F(eo) is
a line at the selected frequency, and the output is the response at that
frequency. If the seismometer is driven with a sinusoidal current at many
different frequencies, so that current is the same at all frequenbies,‘the
input corresponds to a constant level of sinusoidal acceleration of the
frame at all frequencies, and the acceleration response curve is given
by the output. It is only necessary to determlne the equivalent ground
" acceleration to make the callbratlon absolute. Velocity sensitivity of
magnlflcatlon can then be calculated’ by multlplylng the acceleratlon
sen91t1v1ty by we or &032, respectively.

Thls is the technique developed by P.L. Willmore. His main contri-
bution was the use of an impedance bridge to eliminate the direct driving
effect of the test signal on the galvariometer. Independent information

required to make the calibration absolute is the mass in the case of a
translating system or the moment of intertia and distance -of the transducer
coil from the hinge for a rotatlng system. The moment of inertia may bé
calculated from K = Mr ,C ‘ ' :



T
[_rﬁ}w Substitutg
o J—

“Main
VFO Input

From Willmore, 1959

In the bridge circuit, the seismometer-galvanometer circuit has been
changed by the insertion of RR in series, and (Rp + RD) shunting the
galvanometer. Obviously the effect is minimized by making Rg small and
Bg and Rp large. Pomeroy and Sutton suggest building the bridge into
the permanent cirouit. .All elements outside the seismometer, such as
damping resistors and attenuators are put into the galvanometer branch.
The inductance of the seismometer coil is balanced by adjusting the
capacitor Cp. “Even if Lg is small, so that the electrical impedance of
" the seismometer coil is almost purely resistive, the use of Cp is
necessary to get a very good balance of the bridge. ;

The steps in the calibration are:

1) With the seismometer clamped, balance the bridge so that the
galvanometer deflection is negligibly small for strong excitation.’
The balance conditions are Rg/Rr, Lc/RR = RBC. Rg and

Lc can be calculated from these conditions.

2) The seismometer is unclamped, and the galvanometer deflection
is observed as a function of frequency for a constant level of
input.. This gives the relative acceleration response directly.
The phase response can also be observed if needed.

- 3) The input is switched to the "Substitute" position, .putting it
across Rg. Again the galvanometer deflection is read as a function
of frequency. As will be seen, this provides enough information
to make the calibration absolute if the mechanical properties of
the inertial member mentioned above are known. o
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. ~ We shall derive the equations for a translating system, and then
modify them as needed for the rotating system. The output of the
transducér coil is eg = FTZ, as before, and the force due to a current’
ig flowing in the coil is - r‘Tlc . But this force acting directly on
the mass is equivalent to an acceleration of the frame, Section 7.3,

rﬂTic
M

X =

When the seismometer is ciamged this force is balanced by the clamping
mechanism, With the bridge alanced the motion of the galvanometer is .

entirely a result of the response to this force when the seismometer is
unclamped. If i, has a constant amplitude, the equivalent peak accele-
ration is constant, and the acceleration response is obtalned directly.

Call the current in the seismometer coil in the first step (system
clamped) igl, and in the second step, (system uniclamped), igo. The

force driving the mov1ng mass is - [plgo 5 so that the velocity of the -
mass is - '
. i
5y = - [mico
ZM 2

where Zy 1is the mechanical 1mpedance of the seismometer system (see
equation (17 9)

e

y = =
L, 2
=c+ il ®g - —2),
o,

The motion of the mass is caused by the force [7T‘cl’ the force.
acting in the clamped position, but the current actually in the coil
changes to ig» because current flows in the galvanometer branch. ‘Define
Z, as an additional mechanical impedance,- representlng the galvarometer
response, thag changes i,y into igos

2y
i =i R re——
. VA
so that . T Tcel
29 = = -
2 ZM + Zg

In the ‘third step, using the "Substitution" input (this is Stage 4
“in Wlllmore, and we shall use subscript '4' to refere to it for ease of
comparlson), the current in the coil is 104 and’ :

S rlT1c4
%4 T M
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As a result of this métion, a voltage is generated by the transducer,

2.
: 2 T leyq
€4 = M2y = - ———zﬁ———

Call the input voltage across RR in this step e g4 Then the total voltage

'dr1v1ng the galvanometer to produce the deflection 64 is ecq4 + es4e
in the second step, the galvanometer was driven by the voltage egp.

“€g2 =["2p
2. .
Mp®igo
ZM.

Agsuming that the galﬁanometer respondé 1ineariy.to the applied Goltage,

‘904 + es4 €c2

64 02

Solving for egys and substituting for egpend egy,

: M2 8 ) 0o .
- gy g [tee - tee]

The current that produces 67 is the difference between i., and igye
In other words, the voltage egp drives a current igp = 101 through the
. galvanometer, produ01ng this deflectlon, so that -

igp - ig) - iC4

82 !
or o) -
2 . .
9 lc4 = 1c2 = 2cle
Substituting I
T

" If Eg is the voltage out of the source in step 3,

og o —SR_
S Ra + RR
. E.. -
lg & —— S

RS+RR
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If EM_is the voltage applied across the Bridge during steps 1 and 2, k

il

i =ML
°l 7 7¢ + Ry

" where Z¢ is the electrical impedance of the coil. This is known from .
the balance conditions. For low frequencies and small coils, ZCQRC .
Thus, ['7 is given in terms of the ratio of the amplitudes in the two
stages, measurable electrical quantities, and Zy. Zg is eliminated. Zy
could be determined by measuring M, Ty, and , and calculating c. An
easier way, if M is known, is to use the data already collected, as
-followss. - : ' o

21" = o +M2(")e-47.73—)2'

€4 IZM|

L =
Fpicy

2

|ZM| = c at “.= < , the minimum value. Therefore,

will have a minimum at <« =<,

] ‘ .
\-—ég— is plotted against frequency on semi-logarithmic coordinate
paper (logarithmic frequency axis), and the frequency at which the
minimum occurs is the natural undamped frequency of -the seismometer.

The sharpness of this minimum depends on the magnitude of c, the mechanical
damping coefficient. - If no damping vane is used in the system, the

minimum is quite sharp a.nd, «} can be determined accurately.

Now, » 5 ] ) .
. o o :
Z - f
( Oy )2 N Csd i 5 = ( €s4 — )2 .|:02 + 4“2]\’[2 ( fe fn )2 .
%2 ( 21 .02) MRy e '

so that the graph of ( _9_4_)2 Vs, {21( M(__e__-_f_;ﬂ_) is a straight

lire with slape ( .__%é}_'_)?, If this graph is drawn, and the measured
T4l : :

S . e .
'slopé is m, then FTE = _734__

and ’_‘ is determined. 1In practice, this graph will show two straight
lines w1th glightly different slopes for values of f, above and below fp.
This is & result of a small error in picking fn f.‘rom the first graph.

It is sufficiently accurate to use ‘the average of the two slopes to deter-
mine [p 5 or one may adjust £, until the points fall on a single line.
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With I known, the driving acceleration PTicl/M can be calculated
and the acceleration sensitivity determined as a function of frequency
from the values 6.

For a hinged system the equations must bé modified. First, we have
defined ["for a hinged system so that fhlc is the moment father than

the force that drives the system. [I'p in our notation is equal to K-ﬂb
in Willmore's paper. The equivalent ground acceleration for a hinged

system is .
: ['Ricl
My
Everyshere that [ appears in the equations above, Mg is substituted,

and M is replaced by K, the moment of inertia. Angular velocities, b
replace linear velocities 2~throughout. Thus, after making the same

. ) 2 2 _r 2 2
_obgervation, the slope of ( —ég— ) vs. [}HK(——-—_E__n__ )] is
' e

ST S
r’R2lQ1 ’

and T‘ can be calculated.

If MKS units are used, the voltages will be in volts, the currents
in amperes, and re51stances,1n ohms. With c.g.s. units, abvolts, abamps,
and abohms must be used.
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Part III

Other Topics

22. The linear strain seismograph.

(References: H. Benioff, Bull. Seis. Soc. Amer., Vol. 25,. 1935,
pp. 283 ff.; Bull. Geol. Soc. Amer,, Vol. 70 1959, pp. 1019 - 1032;
H. Benioff and d B. Gutenberg, Bull. Seis. Soc. Amer., Vol. 42, 1952,

pp. 229 - 238.)

All of the instruments considered so far nave been based on the
concept of arn inertial member loosely coupled to the moving earth. As
has been shown, such instruments provide a signal containing information
about the ground displacement. One important kind of seismic instrument
does not respond to the displacement of the earth at a point, but to the
difference in displacements at two separated points, in other words, to -
the 1ntegrated strain between the two points. This kind of instrument
is called a strain meter or extensometer.

Piers are constructed at the two points, and then a rigid rod fastened

~ to one of these piers comes very near the second, so that changes in the

distance between the piers can be measured conveniently. The idea is an
0ld one. Milne built a strain meter in 1888 with a distance of 3 feet'
between the piers, but it was very insensitive, providing a magnification
at 1 second of only 1/30. Oddone used a three meter dlstance, ‘with an
hydraulic indicator giving a magnlflcatlon of 3600. However, Oddone's
instrument did not write a record.

By using a much longer distance between piers and his variable
reluctance transducer, Benioff developed a very semsitive strain seismo-
graph. His original instrument, 1935, was based on two piers 60 feet
apart. : The piers were 12 inch iron pipes, sunk 1.5 meters into granite.
The rod -was a two inch pipe insulated by a layer of asbestos and supported
at twelve places along its length by three radial wires.

Modern strain meter tubes are made of fused quartz to reduce their-
temperature sensitivity. Lengths as great as 100 meters, as at Matsushire
Observatory, have been used. M. Major at the Colorado School of Mines
has developed a temperature-compensated strain tube for use in a shallow
trench. Most installation are in tunnels or maines in order to provide
as constant a temperature environment as possible.

It is assumed that the rod acts as an incompressible, perfectly:-
rigid body, so that motion of the pier to which it is attached appears . -
"instantly at its free end, without change. This Trequires that the perlod
of the fundamental mode of free longltudlnal vibrations in the rod be
very short compared to6 the ground perlods. In the original Benioff this.
‘period was 0,016 second.

’ Consider a coordinate system

5 with origin in the free pier and
. - ] | x-axis extending toward the other
2 - . pier. ‘Let ¥ -be the horizontal
Plan View ) displacement at x, B the angle




- 96 ~
between ¥ and x-axis. The component of % along the rod is T cos B .

The linear strain is (&3 /8X )cos B , so that the total displacement of
one pier with respect to the other is ° .-

L : : , .
: .9 '
y = j cos f8 “3%“‘ ax , : (22-1)
0 .
where L is the distance between the piers.
If ‘an electromagnetic transducer is used, ‘the output voltage is
o L 5 .
: . ! ® -
o Ty s S cos §—2— dx (22-2)
0 . -

If the ground motion is a plane wave, with wave length great compared
to L, ﬁa.nd 3 $/5x are constant, so that

CE
y =L cos f8 3% (22-3)
2
. o F .
: r‘Ty = L cos /3 “‘“—é‘fb_é‘;" (22-4)

We represent the disturbance by = (% - r/V), where V is the apparent
surface velocity. V is the same as the true velocity of propagation
only for waves tranvelling horizontally. Otherwise, V = v/ sin i, where
v is the true velocity amd i the angle of incidence at the surface,

' For compressional waves, or motion in the plane of incidence, % is
along r, so that r =xcos g, and

xcos',é )

E-3(6 - =
0= :(;os g
= Ty 3!
3% _,
5t " °

80 ' 0% cos £ 37T
3x VvV T 3t

The mechanical response is, therefore

_ L 0632 ,3 83
== v St
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For shear waves, % is perpendicular to r, so.that r =x cos( (5 - —12[—)

= X sin , and
ﬂ_ x sinf

F s - 2SR

3E sinﬁ. J ¥
Ax oV ot

7 L :
wave = - — sin §cos g gf

<
I

direction

of
propagaliion .
If instead of the angle {3 , between ¥ and x, we use the angle -
between r and x, ol )

: L 2, 9%
For compressional waves, ol = # , ¥y = - — cos oL' 3% (22-5)
. 3% .
For shear waves, o = - _'T/Z sy Y = %‘ sin 0( cos A 3t (22-6)

We note that the dependence of the response on the direction to the
source is quite different for a strain seismograph and a pendulum. Imagine
a source of compression at various positions around the two types of
ihstruments, with & =0 corresponding to either of the two directions
‘of maximum sensitivity to p-waves.

stra/n selsmograph | " Horizontal -Pendulum

- P - wave response

Because the pendulum response varies as cos o', the response will be
maximum at O s and be of opposite sign for the source in the second and
third qgadrants. On the other hand, the strain meter sensitivity varies
as cos s S0 the d1rect1v1ty is sharper, and the sign of the signal
does not change. It doesn't make any d‘fference whether you push from
right or left, the strain meter sees only whether the two piers become
closer together or farther apart

The response of a pendulum to S waves (assujne the same polarity of
the source at all ammuths) varies as sin o ¢ SO that the response is
zero at ol = 0 and 180° , and i's maximum at 90 and 270 but with opposite
signs. The strain meter response to S-waves, on the other hand, has four
Zero, correspondlng to sin ol = 0 and cos o = 0.




_90°

- - —et=0

strain se.ismograph : . Horizontal Pendulum

S - wave response

Suppose two strain seismographs are oriented at right angles, so
that a wave approaching one at the angle ot approaches the other at
( oL - 90°). Let the outputs, y, be added. The response to motion in
. the place of incidence is ) . :

B =%——%—§~E¢0520{+ sihzoﬁ] = -='—#"' gf R

indepvem'ient‘ of o . At the same time, the response to transverse motion
is : '
L 9% . : ,

+ Y St [91110( cos K - sin X coscilf'o.
_ Thus, the combination eliminates transvers motion, such as Love
waves, but records horizontal motion in the plane of incidence with
sensitivity that is independent of azimuth. Thus Rayleigh waves are
separated from Love waves.

If we omit the directional factors from (22-5) and (22-6)(put the
minus here with the ‘direction) and substitute in (22-4), the output of
an electromagnetic transducer mounted between the rod and the free pier

Ml s |

Voot

If this transducer is connected to & galvanometer, so that the toté,l

resistance in the circéuit is R, the current is. ——V—R—-E, and the momeht
driving the galvanometer is _ i
VR °
The equation of motion becomes
.. . 2, . _yre,
§ +.2h%.0 +<,,%0 = KVR  ®

This is exactly the equation for the response of a direct-recording
seismograph (8-3) with the constant (= 1/4) replaced by the coefficient
of €, Thus, a strain seismograph with an electromagnetic transducer has
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"the frequency response of whatever galvanometer is used. With long
‘period galvanometers available, the frequency response equivalent to
long period pendulums can be achieved. Since. the trace amplitude is
2A1 O, where A] is the distance from the galvanometér mirror to. the
scale, the equivalent static magnification, V o’ is

2A Myl

9
KlRV

The sensitivity is therefore depehdent on the appareht surface velocity.

Exercise: What is the senéitivity of a strain seismograph to waves.
travelling vertically upward? Explain in terms of the relative -motion

of the two piers.

If a strain metef is to be used for recording very slow strains, -
such as those associated with earth tides and secular strain increments,
a displacement transducer rather than a velocity transducer is required.
Benioff'(1959) uséd . a bow-string and mirror mechanism to achieve )
mechanical-optical~magnification of relative displacement of 107, so
that with a length of 24,08 meters, a trace displacement of 1 mm was
produced by & strain of 4.15 x 10-9. L

In the same paper, Benioff described a capacitance displacement
transducer that is now widely used. Two parallel plates. are anchored -
" 4o the pier and electrically insulated. A third plate mounted on-the
quartz tube is located between the other two, and is grounded. The two
capacitors thus formed are part of two L-C circuits with the same resonant
frequency. 4 stable 5 MCPS oscillator. is coupled to the two resonant
¢ircuits, whose frequencies are slightly different from the oscillator
frequency.. Displacement of the center plate relative to the other two
changes the two capacitances by the same amount, but in opposite senses.
Thus, one of the resonant circuits is brought closer to the oscillator
frequency, the other is taken farther from it. -‘The currents in the two
circuits are now different, and the difference is proportional to the
displacement of the center plate. '

With this‘transducef, magnification -of more than 105 is available.
Practically thé magnification is limited by the maximum tidal strain.
In the instrument described by Benioff?:magnificatioh.was 80,000, and -

with a 24 meter tube, the sensitivity is such‘that a. trace amplitude of
1 mm corresponds to a strain of 5 x 10710 or 1 mm in 2000 km, S

23, Special applications of seismic instruments.

By mearis of the theory in the preceding sections, the various special
designs of instruments for particular applications may be analyzed. The '
underlying principles are the same == only the frequency range, sensitivity '
level, and recording medium must be selected for the task at hand.

Cpnventional eérﬁhquake observatory instruments appiy these principles
in a straightforward and unadorned fashion. . The-goal is reliablility and
stability of performance, 24 hours a day, year after year. Modern electronic
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devices, which can give great'flexibility and versatility to an instrument
system, are excellent for use in research installations and for instruments
that record for short periods of time, Under the watchful eye of a skilled
technician they are of great values Such devices have been generally ‘
shunned, however, for routine observatory use. . ’

23, 1 Strong-motion instruments.

The purpose of strong-motion instruments-is to record the complex : -
and violent motions within the area of destruction of earthquakes, in A ..
order to provide structural engineers input data: for earthquake-resistant ' ¢
‘construction. Motion associated with industrial blasting operations is’ ‘ N

also monitored by such instruments. Low magnification and sensitivity
‘to high frequencies are required. .

The instruments may be designed as accelerometer (T <% Te), as o
the Ishimoto or Wenner accelerometers, or as displacement meters, Tn:i7 Tgo
Because of the need for a fast chart speed to make the resolution of high
frequency motion possible, economy. requires that strong-motion instruments
operate only while an event is in progress. Instruments for strong earth- '
quake motion observations are equipped with a pendulum starter that is
activated when the ground motion exceeds a predetermined level. This
starter engages a holding relay which cause -the recorder to run for a
time considered long enough %o include the whole motion, say one minute.

This technique means that the onset of the motion is not recorded,
a loss that could be disastrous to a. seismologist, but not so serious
to the earthquake engineer. In a few cases & small foreshock has started
the recorder, so that it was running when the main shock occurred. The
records in these cases are obviously very valuable. . ’

. A technique introduced by Gane (Bull. Seis. Soc. Amer., 1949, D. 117)
in South Africa combines the economy of the self-starter with the advan-
tayes of continuous recording. A closed magnetic tape loop is used as
a delay line. This luop runs continuously, and the seismometer output
"is recorded. Along the loop, at position representing a delay of some
six seconds in Gene's instrument, a playback head is located, followed
by erasure, and back to the record head. If no event of sufficient size
to trigger the recorder occurs, the output of the seismometer.is discarded.

If .a big enough event occurs, the delay between record and playback is
long enough that the recorder is running before the. onsét signal reaches
the playback head, and the entire event is recorded.

Other strong motion instruments such as the Leet and Sprengnether
instruments are designed for blast recording. The origin time of the
ovent is known ahead of time, so that the recorder can be turned on : 2
menually just before the event. : -

2%, 2 Seismic exploration instruments.

In the seismic refiection technigue, chief interest is in the 20-100 cps
pass-band, whereas refraction methods employ somewhat lower frequencies.
. The seismometer used in reflection word are high-frequency vertical .
component units. with smaell masses, suitable for deployment in large n bers
to form arrays. < ‘ : ‘
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The output of the seismemeters in subjected to extensive processing,
either on-line or subsequently. The signals are amplified, filtered, and
signals from différent,channels-are composited to give the optimum record.
of the reflections. Filtering is done in timey using networks, or in
space, using arrays of seismometers. :

It is common for the electronic amplification of the system to be. -
programmed so that the gain increases in a predetermined manner as time’
paéses. In this way deep, weak reflections and shallow, strong reflections
can be accommodated on the same record. Automatic gain control is also
comployed, a non-linear prosess that makes the recovery of actual ground
motion impossible. This is-usually of no concern to the exploration
seismologist, as he is interested in time of arrival primarily. - However,
as exploration targets become more difficult, amplitude data are being
incorporated in the analysis.

‘Photographic records may use displays in the form of a conventional

‘Mywiggly line", variable area recording, variable density recording, or

combination of these. Dramatic improvement in the percdptibility of
reflections results from the use of these presentations..

Initial recording broad-band on magnetic tape is now almost universal,
with filtering done later. Corrections for elevation, normal move-out, . -
weathered-layer thickness, etc. can be applied in the playback unit. In
the last few years systems have come into use in which the seismometer .
magnetic tape. With digital recording in the field, processing by digital’
computers is practical and makes the application of modern concepts of

time-series analysis to routine seismic interpretation‘practical.

© 23,3 Ocean-bottom, bore-hole, and lunar seismographs.

Progress in geophysics hds always followed the extended ability of
research workers to put instruments where they want them, and this applies
in seismblogy as well as the other geophysical sciences, ' )

With almost three-fourths of the earth's surface covered by deep
water, the value of an ocean-bottom seismograph is obvious. Instruments
ablé to operate in the difficult environment of the sea floor have been

- developed in the United States, and an instrument is under,development

in Japan. In one concept, the instrument is completely self-contained.

A 30-day magnetic tape recorder is incorporated, and the assembly is droppe
to the ocean bottom with mo connections to land or even to the surface. -
At the end of a predetermined time interval, the iﬁst:ument package is
broken loose from the base plate, and pops up to the ‘surface. A radio
beacon &nd & flashing light are activated to make recoverly possible.
Recovery of the units is perhaps the most difficult part of .the operation.

'In another approach, the instrument is connected by calbe to shore.
Emplacements as far.as 100 kilometers off-shore have been used. The

coriginal installétiqn is much more costly, but onee succéssfully in place,

offers a more permanent recording site. Because of limitations imposed

_ by the need to lay cables, this techniwue can only extend existing land-
- based observing a small amoutn out from the margins of continents.

However, & glance at & map of world seismicity reveals that an. extension
of even 100 kilometers from continental margins or important islands .
brings some of the most seismic areas on earth within the reach of direct
seismic observations. : S : - .
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Another rather hostile environment in which seismometers are now
routinely operated is in boreholes. These may be from less than 100
meters to several kilometers deep. The goal is to place the instruments
deep enough that they are beneath high-frequency noise propagating as
Rayleigh waves. Because the amplitude of an elastic wave is smaller

in the interior than at the surface by a factor as big as 2, depending
on the angle of incidence, the instrument must be deep enough that the
noise attenuation is greater than 2 before any improvement in signal-to-
noise ratio is achieved. )

Bore-hole instruments must be waterproof, and equipped with cables
and connectors able to operate for a long time in water. The cable must
be arranged so that surface noise is not transmitted down the cable to
the instrument.

The successful emplacement of a seismograph on the moon will provide
important data for understanding that body, as well as the planetary system
in general (F. Press, et al, Jour. Geophys. Res., Vol. 65, pp. 3079-3105,
1960). Instruments have been designed and built for use on the moon
(F.F. Lehner, et al., Jour. Geophys. Res., Vol. 67, Dp. 4779-4794, '1962),
and even sent on theif way in the early Ranger flights. Unfortunately,
none of these instruments was delivered as intended, and so the seismo-
logical community is still awaiting its first lunar seismic data.

23,4 Seismic arrays. N

If a number of seismometers are emplaced in a pattefn and fhe outputs
combined, the resulting seismic array is an instrument itself, with
capabilities beyond the individual elements that go to make it up. The
analysis of seismic arrays is beyond the scope of this course, but
considerable experience in their use has been gained in both seismic
exploration and in super-sensitive observatories. A discussion of under-
lying princip,es is found in N.F. Barker, "Fourier methods in Geophysics",
in vol. 2 of Methods and Techniques in Geophysics, 1966, Section 6.
Directional Arrays.

Compare the response of a group of seismometers scattered over the
earth's surface to two signals, one of which has a very long apparent
wave length along the surface compared to the dimensions of the array,
the other rather short. Examples would be a P wave coming up almost
vertically, so that the wave front is almost parallel to the surface,
and a train of high-frequehcy Rayleigh waves, travelling, of course,
horizontally. The motion associated with the long apparent wave length
is practically in phase at all detectors, and if the outputs are added,
t is signal is reinforced. However, the signal with shorter wave length
will be out of phase at some detectors compared to others, so that in
the summation, this signal is attenuated.

A further step is to take advantage of the fact that seismic noise
propagates with different speeds than the seismic signals thgt are
usually of interest. By time-shifting the output of thg variaus dete?tors
by an amout corresponding to the apparent surface velocity of the des%red
signal across the array, this signal is further enhan9edover the gtralght
summation process, and the noise not so enhanced, giving further improvement

in signal-to-noise ratio.

=



- 103 -

By comparing the time of arrival of an event at the various lelments
of the array, the direction of approach of the signal may be determined.
From the apparent surface velocity and knowledge of the true velocity
in the surface layer of the kind of body wave (P or S) under obscrvation.
the angle of incidence can be derived, providing an added tool for idénti-
fication of phases, especially crustal phases from regional and local

events.



