No. 1

Bulletin of St. Louis University

The Geophysical Observatory

Seismology in St. Louis University.

PART II.

Rev. J.S. T. J. CT. C. S. RHOLDE D.

During the year 1911 the Seismological Department was conducted, as in the preceding year, along the lines sketched in the December Bulletin of the St. Louis University. Hence we respectfully refer our readers to that publication for a discussion of our instrument and methods, as the present report will be supplementary to it.

The earthquakes registered during the year were thirty-seven in number, as tabulated further on. Among these, two are especially worthy of further study. The earthquakes of June 7th and December 16th are both said to have caused considerable damage throughout the central portion of the Republic of Mexico. A comparison of the seismograms, however, reveals decided differences. Hence it will be of the greatest interest to determine as accurately as possible the position of the two epicenters. To this end we made use of each of the three methods now in vogue, that of Prince Galitzin, that of Dr. Klotz, to which we referred in the December Bulletin, and the least square method applied by Dr. Geiger.

THE METHOD OF PRINCE GALITZIN.

The method of Prince Galitzin consists in reducing the first maximum amplitude of the P-waves, which appears on the record of each component to the corresponding earth-motion amplitudes (AE and

An), and applying the formula: $\tan x = \frac{A_E}{A_N}$, in which x is the angle

of azimuth. In this formula we give the positive sign to an earth-displacement toward the north or east, and the negative sign to a displacement toward the south or west. The arrows on the seismogram for December 16th indicate the corresponding displacements of the

pen on our seismograph when the inertia of the pendulum and pillar does not come into play, as would be the case in very rapid oscillations. Since the first preliminary waves are longitudinal, they must of necessity impinge upon the seismograph in a line parallel to the direction of motion of the wave front; and, if the components are properly recorded, this line will be indicated by the seismograph. But the direction of the impulse communicated by the wave-front will be toward the epicenter or away from it according as the wave is dilatational or condensational, that is, a contraction toward the hypocenter or an outward compression away from it, as Prince Galitzin has well pointed out. This ambiguity is at once removed by noting whether the vertical component is upward, as would be the case in a condensation wave, or downward, as in a dilatation wave. If the latter is true, then the epicenter lies in the opposite direction from that indicated by the seismograph. Prince Galitzin has demonstrated to evidence that this method of locating epicenters is capable of great accuracy when applied, with proper precautions, to the records of his specially designed aperiodic pendulums with photo-galvanometric registration. To what extent it may be relied upon in the case of a small machine like ours with all its friction may be seen from the following results. The constants of our Wiechert 80 kg. horizontal seismograph, as determined June 6th, the day before the first of the two Mexican earthquakes, were: $T_{nE} = 7 \text{ sec.}$, $T_{nN} = 7 \text{ sec.}$, $V_{E} = 67$, $V_{\rm N} = 79$. Taking the first impulse which appears on both components, the respective amplitudes reduced to earth motion, were: AE = 7.8 μ , An = 67.9 μ , which give an azimuth for the epicenter = tan -1 .1149 = S 6° 33′ W. Taking this value together with the distance $\Delta = 2600$ km., and solving the corresponding spherical triangle, we obtain as co-ordinates of the epicenter: $\phi = 15^{\circ}.3 \text{ N}, \lambda = 92^{\circ}.9 \text{ W}.$ As a check on this result we do the same for the first impulse in the reflection 24 sec. later and obtain as azimuth S 17° 6' W. This gives us as co-ordinates: $\phi = 16^{\circ}.1 \text{ N}$, $\lambda = 97^{\circ}.2 \text{ W}$. Prince Galitzin obtained by his method from the observations of Pulkowa, $\phi = 19^{\circ} 34' \text{ N}$, $\lambda = 97^{\circ} 59' \text{ W.}^{4}$

The constants for December 16th, as determined the following day, were: = $T_0 E = 6.8$ sec., $T_0 N = 7$ sec., V E = 88, V N = 83. The earth amplitudes of the initial impulse were: $A E = 12.5 \ \mu$, $A N = 22.7 \ \mu$. This gives as azimuth S 28° 50′ W. Taking the distance as 2690 km., we obtain as co-ordinates: $\phi = 16^\circ.8$ N, $\lambda = 102^\circ.9$ W. However, if we take as horizontal components the average maximum amplitude of

¹Seismology in St. Louis University, Bulletin, Vol. VII, No. 5, December, 1911.

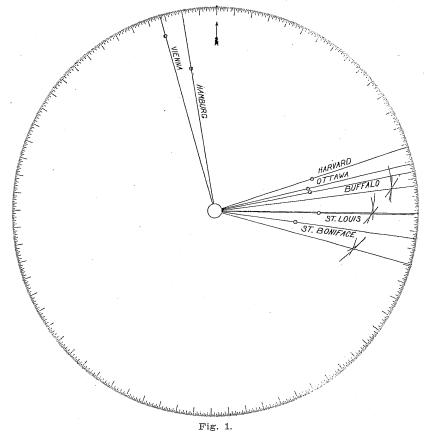
²Bestimmung der Lage des Epicentrums eines Bebens aus den Angaben einer einzelnen Station, St. Petersburg, 1911.

³Dr. L. Geiger — Herdbestimmung bei Erdbeben aus den Ankunftszeiten, Goettingen, 1910.

⁴Op. cit. See Note 3.

59

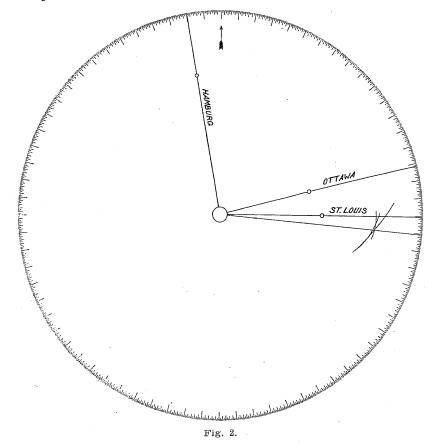
several of the waves immediately following the initial impulse, we obtain as azimuth S 18° 26′ W. This places the epicenter at $\phi = 15^{\circ}.4 \text{ N}, \lambda = 98^{\circ} \text{ W}.$


Dr. Tams obtained from the observations of Hamburg, by the same method: $\phi = 16^{\circ}$ N, $\lambda = 97^{\circ}$ W.⁵

By another method Dr. Zeissig obtained as co-ordinates: $\phi = 15^{\circ}.6$ N, $\lambda = 96^{\circ}.4$ W.

It will be seen from these results that the Galitzin method, even with a small machine like ours, will give a very fair approximation.

STEREOGRAPHIC METHOD OF DR. KLOTZ.


Applying the method of Dr. Klotz⁶ to the earthquake of June 7, we obtain three approximate intersections of three circles. (Fig. 1.)

5 Mitteilungen, No. 44.

The lower intersection determined by data from Hamburg, Harvard and St. Boniface places the epicenter at $\lambda=104^\circ.6$ W, $\phi=19^\circ.8$ N. The middle one, from Vienna, Buffalo and St. Louis, gives $\lambda=89^\circ.9$ W, $\phi=14^\circ.5$ N. According to the upper one, due to Vienna, Ottawa and Harvard, $\lambda=82^\circ$ W and $\phi=7^\circ.7$ N.

Applying the method to the earthquake of Dec. 16, we obtain but one intersection of three circles, as seen in Fig. 2. This would place the epicenter at $\lambda = 95^{\circ}$ W, $\phi = 15^{\circ}$ N.

The discrepancies which appear in the values thus obtained for the epicenter of the June earthquake would seem to indicate that the epicentric area was of considerable extent. A further reason for suspecting this may be found in the fact that, though the epicenter was evidently somewhere beneath the Pacific, the whole of Central Mexico was included in the megaseismic district. In order

⁶Dr. Otto Klotz, F. R. A. S.—Earthquake Epicenters. Journal of the Astronomical Society of Canada, May-June, 1910.

to ascertain what point was probably nearest the center of the epicentric area we may now apply the method of Dr. Geiger.

PROBABILITY METHOD FOR THE DETERMINATION OF EARTHQUAKE EPICENTERS FROM THE ARRIVAL TIME ONLY.

Nomenclature: λ = longitude, ϕ = latitude, t = time in hours, minutes and seconds of an occurrence. T = a period of time in minutes and seconds for wave translation. * indicates that the accompanying value is assumed, subject to correction. Δ is angular distance on the earth's surface. † is used but once, and indicates observation, and as attached to time means observation time of arrival at a station. Numeral subscripts and the general subscript $_0$ designate the station data, either assumed or absolute. Subscript $_0$ indicates an epicentric function.

To make use of this third method, we must first assume an approximate location of the epicenter, and the closer this assumption is to the ultimate location the smaller will be the corrections and the more accurate the work; but a very fair localization may be computed with an error of several degrees in the first assumption. The process depends to a great extent on the translation time of the first preliminaries, which is, of course, not a linear function of the distance.

If we assume λ_0 , ϕ_0 and t_0 by any convenient method, and assume that in each there is an error which we will designate by $\delta^*\lambda_0$, by $\delta^*\phi_0$ and by δ^*t_0 , equation (1) follows:

$$\lambda_0 = {}^*\lambda_0 + \delta {}^*\lambda_0$$

$$\phi_0 = {}^*\phi_0 + \delta {}^*\phi_0 \text{ and } t_0 = {}^*t_0 + \delta {}^*t_0$$

In these equations the left-hand members are the ones primarily sought, and the first terms of the right-hand members are unvarying assumed quantities subject to variation by their second terms, which are the corrections. Here the case resolves itself into a determination of the δ quantities. To determine these we proceed as follows:

We first calculate the distance from the assumed epicenter to each station, by means of the spherical cosine law:

$$\cos \Delta_n = \sin \phi_0 \sin \phi_n + \cos \phi_0 \cos \phi_n \cos (\lambda_0 - \lambda_n) \qquad (2)$$

In our tabular work at the end of the discussion this is done logarithmically, and the two terms of the right-hand member of the cosine law are designated by I and II. These are to be added. After

obtaining in this way $\cos *\Delta_n$, the corresponding $*\Delta_n$ in angular measurement is taken from a table of natural cosines.

Having now the angular or arcual distance approximately, from station $_n$ to an assumed location of the epicenter, we take from Table 1^s an approximate translation time. This translation time is called, according to our symbols, *T_n . An approximate translation time added to an approximate occurrence time will give an approximate arrival time, i.e.—

 $*t_{n} = *t_{0} + *T_{n} (3)$

Were there no error in our assumed location, and no error in recorded times, and no error in observation, this t_n would be our observation time, t_n . But there are errors, so that there will be a difference, t_n , between the two, t_n .

$$F_{\mathbf{n}} = *t_{\mathbf{n}} - \dagger t_{\mathbf{n}} \qquad . \tag{4}$$

The foregoing makes it clear that if there were no errors such as $\delta^*\lambda_0$, $\delta^*\phi_0$ and δ^*t_0 , and the $\dagger t_0$ were accurate, there could be no F_0 .

Our next step is to establish a relationship between F_n and the errors in assumption which occasion its existence.

Assuming for the moment that all data were correct for location and time at the epicenter except the longitude, and that an F_n existed because of a difference in longitudes, then

$$F_{\rm n} = \delta^* \lambda_0 \frac{\delta^* t_{\rm n}}{\delta^* \lambda_0},$$

that is, $F_{\rm n}$

would be a time correction equal to the time correction per unit of longitude, multiplied by the number of units of longitude correction. If we were to examine the rate of change in translation time per degree of longitude, and with this ratio correct our time by an amount equal to that ratio multiplied by the actual longitude correction in the same units, this would satisfy F_n in so far as the longitude variation is concerned. Now, all that has been said about longitude will apply with equal force to latitude independently, and we shall have $\delta^*\phi_0$ ($\delta^*t_n/\delta^*\phi_0$). On the other hand, if we suppose a change in time of occurrence, $*t_0$, there must be a similar change in time of arrival, t_n , so that the rate of change of arrival time with respect to occurrence time, δ^*t_0/δ^*t_0 , is always unity. In order, however, to handle the matter mathematically this time ratio is treated as are the others, and hence a third correction appears as $\delta^* t_0$ $(\delta^*t_n/\delta^*t_n)$, though its value is merely δ^*t_n . From this consideration STaken from Dr. L. Geiger's Herdbestimmung. See Note 4.

it follows that F_n is essentially a differential by existence, for it may be equated to differentials as has been done above; and hence approaches 0 as a limit when δ -terms are made indefinitely small. Now it may be shown by Taylor's Theorem that if F_n depend separately upon $(\delta^*t_n/\delta^*\lambda_0)$ $\delta^*\lambda_0$, $(\delta^*t_n/\delta^*\phi_0)$ $\delta^*\phi_0$, and $(\delta^*t_n/\delta^*t_0)$ δ^*t_0 , it may be equated to their sum. In forming this equation, the partial differential sign, δ , replaces δ in the ratio to indicate that each is treated as if the others were constants and that in the end the sum total is used. In our work tabulated later it will be seen that this is exactly followed out with respect to latitude and longitude, and the same would have been done with respect to time, but for the fact that the time ratio is everywhere equal to 1, and hence would only have introduced useless work.

Therefore
$$F_n = \frac{\partial^* t_n}{\partial^* \lambda_0}$$
, $\delta^* \lambda_0 + \frac{\partial^* t_n}{\partial^* \phi_0}$, $\delta^* \phi_0 + \frac{\partial^* t_n}{\partial^* t_0}$, $\delta^* t_0$. (5)

From relations established in (3) it follows that any increment given to t_n will have to be given to T_n , otherwise the translation time would be a variable with the hour of the day, so that t_n may replace t_n in any ratios.

Therefore we may substitute in (5)

$$F_{n} = \frac{\partial^{*}T_{n}}{\partial^{*}\lambda_{0}} \cdot \delta^{*}\lambda_{0} + \frac{\partial^{*}T_{n}}{\partial\phi_{0}} \cdot \delta^{*}\phi_{0} + \delta^{*}t_{0} \qquad (6)$$

By replacing the ratios in (6) with a_n , b_n and c_n , and remembering that c_n must be = 1, we obtain at once

$$F_{n} = a_{n} \, \delta^{*} \lambda_{0} + b_{n} \, \delta^{*} \phi_{0} + c_{n}. \quad \delta^{*} t_{0} \qquad . \tag{7}$$

After equation (6) we placed $a_n = \frac{\partial^* T_n}{\partial^* \lambda_0}$, $b_n = \frac{\partial^* T_n}{\partial^* \phi_0}$. Introducing

now $\partial^*\Delta_n$ in both numerator and denominator of each of these ratios, and factoring the resulting fraction, we get:

$$a_{n} = \frac{\partial^{*}T_{n}}{\partial^{*}\Delta_{n}} \frac{\partial^{*}\Delta_{n}}{\partial^{*}\lambda_{0}} \quad \text{and} \quad b_{n} = \frac{\partial^{*}T_{n}}{\partial^{*}\Delta_{n}} \frac{\partial^{*}\Delta_{n}}{\partial^{*}\phi_{0}} \quad . \tag{8}$$

Now, if we reckon $\partial^* T_n$ in seconds of time and $\partial^* \Delta_n$ in minutes of arc, the first ratio in the above will express the difference in the translation time per minute of arc change in the $^*\Delta_n$. This may be calculated from Table I as follows: Take the time difference, d^*_n , for each station in seconds corresponding to a change of one degree at the

given distance, $^*\Delta_n$, and divide it by 60 to obtain the time difference for 1'.

The second ratio in each case will obviously be the quotient of the change produced in the distance, $^*\Delta_n$, by giving an increment to the longitude or latitude of the assumed epicenter, divided by that increment, that is, the change in $^*\Delta_n$ per unit change in $^*\lambda_0$ or $^*\phi_0$. This ratio may readily be obtained in the following manner: Assign an arbitrary increment, $\delta^*\lambda_0$, say of 1° or more, to the longitude of the assumed epicenter. The co-ordinates of this new point will be $[(^*\lambda_0 + \delta^*\lambda_0), ^*\phi_0]$. By means of the spherical cosine law, (2), calculate the distance from each station to that point. Call this distance $^*\Delta_n\lambda$. Then, evidently, $^*\Delta_n\lambda - ^*\Delta_n = \delta^*\Delta_n$, the change produced in $^*\Delta_n$ by assigning the increment to $^*\Delta_0$. Divide this total change, $\delta^*\Delta_n$, by the increment assigned to $^*\lambda_0$, and the quotient will be the approximate change in $^*\Delta_n$ per unit change in $^*\lambda_0$, which is the desired ratio, $\delta^*\Delta_n/\delta^*\lambda_0$. The products of $\delta^*\Delta_n/\delta^*\lambda_0$ and $d^*_n/60'$ for each station (8) will give the coefficient a_n in (7).

Proceeding in a similar way to obtain

$$\frac{\partial^* \Delta_n}{\partial^* \phi_n}$$

we assign the same

arbitrary increment of 1° or more to $^*\phi_0$, calculate the distance, $^*\Delta_n\phi$, from each station to the new point, $[^*\lambda_0, (^*\phi_0 + \delta^*\phi_0)]$, find the difference $^*\Delta_n\phi - ^*\Delta_n$, and divide it by the latitude increment $\delta^*\phi_0$. The result will again be the desired ratio $\delta^*\Delta_n/\delta^*\phi_0$, which, when multiplied by the interpolation factor $d^s_n/60'$ from (9) will give the second coefficient b_n in (7). This work will be found tabulated with $^*\Delta_n$, the distance from each station to the assumed epicenter, in Table 2.

We have now real numerical values for a_n and b_n as well as for $c_n = 1$. But a_n denotes any one of the stations, so that by (7) we see that we have an F-value, F_n , for each station. Thus we have as many error equations as there are stations whose data we used. Now it is shown in the theory of the least square method, that the most probable val-

⁹For proofs the reader may consult:

Bartlett, Method of Least Squares;

Merriman, Method of Least Squares, New York, 1884;

Woodward, Geographical Tables, Smith. Inst. Publ., 1894;

Doolittle. Practical Astronomy, 5th Ed., 1910;

Helmert, Ausgleichungsrechnung nach der Methode der kleinsten Quadrate, 2 Aufl. 1907.

ues of the required unknowns are those which will make the sum of the squares of the single errors a minimum. Let x be some quantity which added to each of the assumed errors will make the sum of the squares of the resulting quantities, $(F_1 + x)^2 + (F_2^2 + x)^2 + \dots + (F_n + x)^2$, a minimum.

Then it follows from the Calculus that, as the function under consideration tends toward a minimum and not a maximum, that value of x will make the function a minimum which will make the first derivative equal to 0. Therefore differentiating, equating to 0 and solving for x, we obtain the correction which must be added to each station error so as to make the mean error a minimum. Our general error equation now becomes:

$$(F_{n} + x) = a_{n} \delta^{*} \lambda_{0} + b_{n} \delta^{*} \phi_{0} + c_{n} \delta^{*} t_{0} \qquad . \tag{10}$$

This gives the greatest weight to those stations whose observations most nearly agree, and least weight to those whose error differs most from the mean. Each of the three unknown quantities will have thus to adjust themselves to that value which will give the least mean error. We now tabulate as in Table 3, the numerical values of the three coefficients a, b and c, and their sum S, which will be needed in further work, together with the "weighted error" (F+x) for each station. This latter value, $(F+x)_n$, we shall call simply F_n . For convenience also we shall set the first unknown $\delta^*\lambda_n = x$; the second, $\delta^*\phi_n = y$; and the third, $\delta^*t_0 = z$. We are now ready to form and to solve the so-called normal equations.

FORMATION AND SOLUTION OF THE NORMAL EQUATIONS.

If there be a given number of simultaneous equations and that number is in excess of the number of unknowns, as in our case, then, in attempting a solution, it may be impossible to justify all the results obtained on account of inaccuracies in the original data. The values of the quantities depend upon the values of the coefficients and if it be possible to adjust these to a most probable value for each, then one result for each unknown may be obtained. For most physical purposes, where the best result that can be obtained is an approximation, such a proceeding is very useful. The method, with an arrangement of detached coefficients, is as follows:

We are given the following five equations:

$$a_1x + b_1y + c_1z = F_1$$

 $a_2x + b_2y + c_2z = F_2$
 $a_3x + b_3y + c_3z = F_3$
 $a_4x + b_4y + c_4z = F_4$
 $a_5x + b_5y + c_5z = F_5$

From these we are to find the value of the three unknown quantities. If the five equations are added term by term an equality will remain and may be written, [a]x + [b]y + [c]z = [F], in which the sign $[\]$ means simply that the term enclosed by it is a sum of all such quantities.

This single equation will give one in which the inaccuracies are averaged and, if the errors are equal, or if equal reliance may be placed on each element of the data, it is the most reasonable approximation that we can select.

The one equation given above will not suffice for the solution of the three unknowns, so a method must be given that will provide at least three equations. If, before making the addition above, each of the N equations had been multiplied by a_n , where n is a general subscript, our sum would have been, by the notation that we are using.

$$[aa]x + [ab]y + [ac]z = [aF]$$
 and similarly multiplying by b_n $[ab]x + [bb]y + [bc]z = [bF]$ and similarly multiplying by c_n $[ac]x + [bc]y + [cc]z = [bF]$.

These are known as normal equations and are treated as any other simultaneous equations. There are but three of them for a solution of three unknowns, so that there can be no interference from a number of different answers. In other words, we have averaged our error before the computation began.

In the following work we will omit, for the greater part, the sign [], which means the sum of all such terms as are enclosed by it, though account of it must be made. We need:

From these we calculate,
$$bb-\frac{ab}{aa}$$
, $ab=bb_1$
$$bc-\frac{ab}{aa}$$
, $ac=bc_1$
$$bF-\frac{ab}{aa}$$
, $aF=bF_1$
$$cc-\frac{ac}{aa}$$
, $ac=cc_1$
$$cF-\frac{ac}{aa}$$

And from these in turn,

$$cc_1 - \frac{bc_1}{bb_1}, bc_1 = cc_2$$

$$cF_1 - \frac{bc_1}{bb_1}, bF_1 = cF_2$$

In order to check the numerical work from time to time an independent calculation is carried on. This independent work has enough totals in common with the regular work to be of service as a check, but the determination should be carried out as above, with the following as a check and nothing else:

Let
$$a + b + c = S$$

$$a_1S_1 + b_2S_2 + a_3S_3 \quad . \quad . \quad a_nS_n = aS$$

$$b_1S_1 + b_2S_2 + b_3S_3 \quad . \quad . \quad b_nS_n = bS$$

Then

$$aa + ab + ac = aS$$

$$ab + bb + bc = bS$$

$$ac + bc + cc = cS$$

$$aF + bF + cF = FS$$

From this we can calculate

$$bS-\frac{ab}{aa}$$
 $aS=bS_1$, and it follows that $bS_1=bb_1+bc_1$, which checks two of our other determinations.
$$cS-\frac{ac}{-aa}$$
 $aS=cS_1$ and so $cS_1=bc_1+cc_1$
$$FS-\frac{aF}{-aa}$$
 $aS=FS_1$ and so $FS_1=bF_1+cF_1$ And, furthermore, $cS_1-\frac{bc_1}{bb_1}$ $bS_1=cS_2$ and $cS_2=cc_2$
$$FS_1-\frac{bF_1}{bb}$$
 $bS_1=FS_2$ and $FS_2=cF_2$

As a matter of final check we return to our original equations like, $a_1x + b_1y + c_1z = F$, and substitute, when the real error will appear. We will proceed with the solution of the general case.

(1)
$$aax + aby + acz = aF$$

$$(2) abx + bby + bcz = bF$$

(3)
$$acx + bcy + ccz = cF$$
.

Eliminating x from (1) and (2) we have:

$$aa.abx + ab.aby + ab.acz = ab.aF'$$

 $aa.abx + aa.bby + aa.bcz = aa.bF$

Subtracting the one from the other and dividing by aa, we obtain:

(4)
$$(bb - \frac{ab}{aa}, ab)y + (bc - \frac{ab}{aa}, ac)z = (bF - \frac{ab}{aa}, aF)$$

Transforming by substitution, we have:

(5)
$$bb_1y + bc_1z = bF_1$$

Eliminating x from (1) and (3) we have:

$$aa.acx + ab.acy + ac.acz = ac.aF$$

 $aa.acx + aa.bcy + aa.ccz = aa.cF$. By repeating the subtraction, division by aa , and the transforming by substitution, we also have

(6) $bc_1y + cc_4z = cF_4$, in which bc_4 is the same as in (5).

Eliminating y from (5) and (6),

$$\begin{array}{l} bb_1y + bc_1z = bF_1 = (bb_1.bc_1)y + (bc_1.bc_1)z = bc_1bF_1\\ bc_1y + cc_1z = cF_1 = (bb_1.bc_1)y + (bb_1.cc_1)z = bb_1cF_1\\ (bc_1.bc_1 - bb_1.cc_1)z = (bc_1bF_1 - bb_1.cF_1) \end{array}$$

Dividing by $-bb_1$, transforming and substituting, we obtain:

(7)
$$cc_2z = cF_2$$

(8)
$$z = \frac{cF_2}{cc_2}$$

Substituting z in (5) and transposing, we obtain:

(9)
$$y = \frac{bF_1}{bb_1} - \frac{bc_1}{bb_1} z$$

Evaluating (1) for x we have:

$$(10) x = \frac{aF}{aa} - \frac{ab}{aa}y - \frac{ac}{aa}z$$

Substituting for x, y and z, their original symbols $\delta^*\lambda_0$, $\delta^*\phi_0$, δ^*t_0 , and replacing these in equation (1) by the values here found, we obtain the co-ordinates of the corrected epicenter, λ_0 , ϕ_0 and t_0 . By the method of detached coefficients outlined above, the value of the three unknowns may be calculated directly, without solving the simultaneous equations, by substituting the required coefficients in the final formulas.

As a final check on the entire calculation we substitute the values of $\delta^*\lambda_0$, $\delta^*\phi_0$ and δ^*t_0 in each of the N error equations, and thus obtain the N "error corrections."

$$f_{n} = a_{n} \underline{\delta}^{*} \lambda_{0} + b_{n} \underline{\delta}^{*} \phi_{0} + c_{n} \underline{\delta}^{*} t_{0} - F_{n}$$
 (11)

The sum of these "error corrections" must then be:

$$ff = FF - \frac{aF}{aa} \cdot aF - \frac{bF_1}{bb_1} \cdot bF_1 - \frac{cF_2}{cc_2} \cdot cF_2$$
 (12)

These quantities will be found in Table 5.

METHOD OF DETERMINING THE ACCURACY ATTAINED.

We should not be satisfied with the values we have obtained for λ_0 , ϕ_0 and t_0 , without some precision measure to test their accuracy. By this we mean, however, their relative accuracy, for if there be a constant error in the observations of all the stations whose data we have used then there will also be an absolute error in the above quantities, which only new station data will detect. With this distinction clearly in mind we proceed to determine the so-called mean error, $\mu\lambda$, $\mu\phi$ and μt , which is to be feared in the three quantities, λ_0 , ϕ_0 and t_0 . This Dr. Geiger does in the following way:

First calculate the six coefficients of weight, as they are called, $Q\lambda\lambda$, $Q\phi\phi$, Qtt, $Q\lambda\phi$, $Q\lambda t$, $Q\phi t$,

$$Q\lambda\lambda = \frac{bb \cdot cc - bc \cdot bc}{[aa] \cdot [bb_1] \cdot [cc_2]} = \frac{Z\lambda\lambda}{D}$$

$$Q\phi\phi = \frac{aa \cdot cc - ac \cdot ac}{[aa] \cdot [bb_1] \cdot [cc_2]} = \frac{Z\phi\phi}{D}$$

$$Qtt = \frac{aa \cdot bb - ab \cdot ab}{[aa] \cdot [bb_1] \cdot [cc_2]} = \frac{Ztt}{D}$$

$$Q\lambda\phi = -\frac{ab \cdot cc - ac \cdot bc}{[aa] \cdot [bb_1] \cdot [cc_2]} = \frac{Z\lambda\phi}{D}$$

$$Q\lambda t = -\frac{ac \cdot bb - ab \cdot bc}{[aa] \cdot [bb_1] \cdot [cc_2]} = \frac{Z\lambda t}{D}$$

$$Q\phi t = -\frac{bc \cdot aa - ab \cdot ac}{[aa] \cdot [bb_1] \cdot [cc_2]} = \frac{Z\phi t}{D}$$

$$Q\phi t = -\frac{bc \cdot aa - ab \cdot ac}{[aa] \cdot [bb_1] \cdot [cc_2]} = \frac{Z\phi t}{D}$$

$$Q t = -\frac{bc \cdot aa - ab \cdot ac}{[aa] \cdot [bb_1] \cdot [cc_2]} = \frac{Z\phi t}{D}$$

$$Q\phi t = -\frac{bc \cdot aa - ab \cdot ac}{[aa] \cdot [bb_1] \cdot [cc_2]} = \frac{Z\phi t}{D}$$

$$Q\phi t = -\frac{bc \cdot aa - ab \cdot ac}{[aa] \cdot [bb_1] \cdot [cc_2]} = \frac{Z\phi t}{D}$$

$$Q\phi t = -\frac{bc \cdot aa - ab \cdot ac}{[aa] \cdot [bb_1] \cdot [cc_2]} = \frac{Z\phi t}{D}$$

$$Q\phi t = -\frac{bc \cdot aa - ab \cdot ac}{[aa] \cdot [bb_1] \cdot [cc_2]} = \frac{Z\phi t}{D}$$

$$Q\phi t = -\frac{bc \cdot aa - ab \cdot ac}{[aa] \cdot [bb_1] \cdot [cc_2]} = \frac{Z\phi t}{D}$$

$$Q\phi t = -\frac{bc \cdot aa - ab \cdot ac}{[aa] \cdot [bb_1] \cdot [cc_2]} = \frac{Z\phi t}{D}$$

$$Q\phi t = -\frac{bc \cdot aa - ab \cdot ac}{[aa] \cdot [bb_1] \cdot [cc_2]} = \frac{Z\phi t}{D}$$

$$Q\phi t = -\frac{bc \cdot aa - ab \cdot ac}{[aa] \cdot [bb_1] \cdot [cc_2]} = \frac{Z\phi t}{D}$$

As a check on these calculations we test the truth of the following:

$$[aS] \cdot (Q\lambda\lambda + Q\lambda\phi + Q\lambda t) + [bS] \cdot (Q\lambda\phi + Q\phi\phi + Q\phi t) + [cS] \cdot (Q\lambda t + Q\phi t + Qt t) = 3 \qquad (14)$$

The number 3 is the number of the unknowns. These values will be found in Table 4.

¹⁰See Note 4.

Next we need the error of unit weight, μ . This we find by the formula:

$$\mu = \sqrt{\frac{ff}{N-3}} \qquad . \tag{15}$$

ff being the value obtained in (12), N the number of stations, and 3 the number of unknowns as above. Then the mean errors are:

$$\mu\lambda = \pm \mu\sqrt{Q\lambda\lambda}, \ \mu\phi = \pm \mu\sqrt{Q\phi\phi}, \ \mu t = \pm \mu\sqrt{Qtt} \qquad . \tag{16}$$

The relative accuracy of the entire determination may now be graphically characterized by constructing the so-called mean error ellipse. To this end we must first reduce the above longitude and latitude error values to the same absolute units. As the absolute length of a latitude unit is practically invariable, being always measured on great circles, while that of the unit of longitude varies with the cosine of the latitude, it follows that $\mu\phi$, on this basis will remain $\mu\phi$, while $\mu\lambda$ will become $\mu\lambda$ cos ϕ_0 . So, too, if we denote the coefficient of longitude on itself, reduced to this basis, by Q_{11} , of latitude on itself by Q_{22} and the coefficient of mutual weight by Q_{12} , then it is evident that Q_{22} will be the same as above, $Q\phi\phi$, while Q_{12} will contain $\cos\phi_0$ once as a factor and Q_{11} twice. Hence

$$Q_{11} = Q\lambda\lambda \cos^2\phi_0, \ Q_{12} = Q\lambda\phi \cos\phi_0, \ Q_{22} = Q\phi\phi$$
 . (17)

Now the angle ω , at which the longitude semi-axis $\mu\omega_1$, is inclined to the parallel in the Figure 3, is given by the equation

$$\tan 2\omega = \frac{2Q_{12}}{Q_{11} - Q_{22}} \tag{18}$$

From this we obtain the angle ω_2 at which the latitude semi-axis $\mu\omega_2$ is inclined to the meridian, for evidently

The only values that still remain to be determined are the lengths of the two semi-axis $\mu\omega_1$ and $\mu\omega_2$. These are given by:

$$\mu\omega_{1} = \pm \mu\sqrt{Q_{11} + Q_{12} \tan \omega_{1}}$$

$$\mu\omega_{2} = \pm \mu\sqrt{Q_{11} + Q_{12} \tan \omega_{2}} \qquad (20)$$

 μ being the error of unit weight from (15).

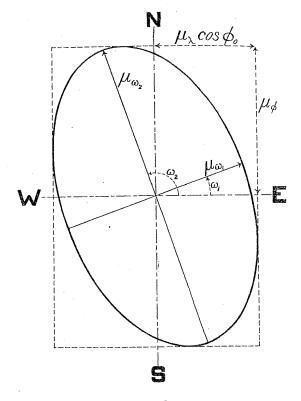


Fig. 3.

The projections of the ellipse on the meridian and parallel, and hence the sides of the tangent quadrangle enclosing the ellipse are $2\mu\phi$ and $2\mu\lambda$ cos ϕ_0 . The relative probability that the epicenter lies within the ellipse is $1 - \sqrt{e} = 0.393$.

PROBABILITY METHOD APPLIED TO THE EARTHQUAKE OF JUNE 7, 1911.

Pachier or Conse

The first step to be taken in applying this third method is, as we have said, to assume a probable location for the epicenter. Now, in the case of the June 7th earthquake, we shall take as probable coordinates: $\lambda = 103^\circ$ W, $\phi = 19^\circ$ N, which would place the epicenter between $\lambda = 97^\circ$ 59′ W, $\phi = 19^\circ$ 34′ N, as given by Prince Galitzin, and $\lambda = 104^\circ.6$ W, $\phi = 19^\circ.8$ N, as obtained from the Hamburg-Harvard-St. Boniface intersection according to the method of Dr. Klotz.

On account of what seems to be a considerable disagreement in the arrival times of stations at a greater distance, we shall choose the following five stations as being close to the earthquake, and still sufficiently scattered for our purpose: Buffalo, Harvard, Ottawa, St. Boniface, Santa Clara, St. Louis.

	Statio							Arrival Time
Place.	No.	Lon	gitu	ıde.	L_i	atitu	de.	of P-Waves.
Epicenter	0	103°	00′	00"	19°	00′	00"	11 h. 2 m. 32 s.
St. Louis								
St. Boniface								
Harvard	3	71°	6′	59"	42°	22'	56"	11 h. 9 m. 50 s.
Buffalo								
Santa Clara								
Ottawa	6	75°	42'	57"	45°	23′	38"	11 h. 9 m. 43 s.

With these we calculate Table II for each station (of which we give only one example), and Tables III, IV and V. We see from Table IV that the corrected position of the epicenter is: $\lambda_0 = 102^{\circ}$ 39′ \pm 23′ W, $\phi = 18^{\circ}$ 30′ \pm 96′ N. The next step will be to calculate and construct the mean error ellipse about this point as center.

From (17), $Q_{11}=\pm$ 36.35, $Q_{12}=-$ 68.15, $Q_{22}=\pm$ 682.67. Hence tan $2\omega_1=\pm$.2087, $\omega_1=5^\circ$ 57′.3, $\omega_2=95^\circ$ 57′.3 and

 $\mu\omega_1 = 3.66\ 36.35 - 68.15 \times .1043 = 19.9\ {\rm Geogr.\ miles},$ $\mu\omega_2 = 3.66\ 36.35 + 68.15 \times 9.5878 = 96.5\ {\rm Geogr.\ miles}.$

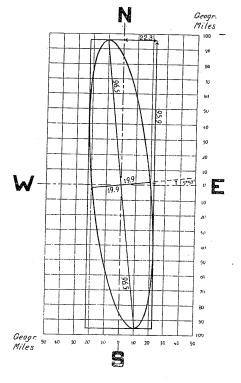
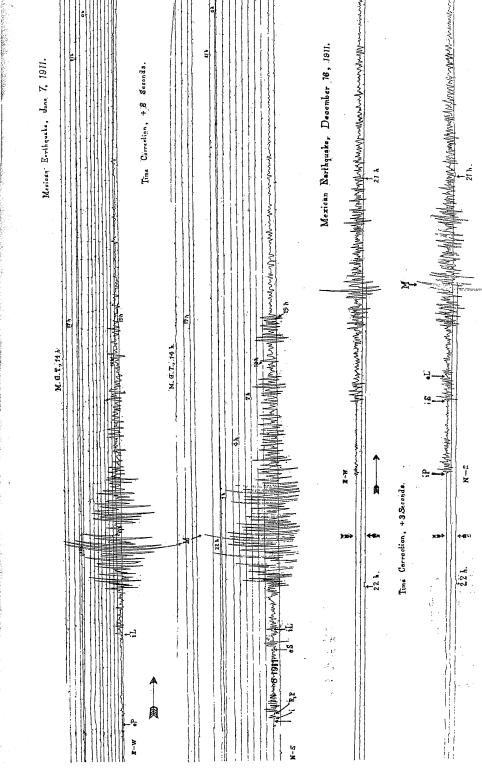


Fig. 4.

The ellipse is seen to be very elongated in the direction of latitude and any further stations which would be brought into the calculations should be chosen along the N-S axis, so as to diminish the eccentricity of the figure and thereby greatly increase the reliability of the results.


					TAB	LE I	•				
Δ	T	d	Δ٠	Т	d	Δ	T	d	Δ	T	d
0°1 1233445566788910011112131314415516617181920212223324425526627288930	15 31 47 62 77 92 107 121 136 150 164 178 192 206 219 232 244 257 269 281 293 304 315 326 337 348 358 368 378	15s 16 16 15 15 15 15 15 14 14 14 14 14 11 11 11 11 11 11 11 10 10 10 10	30° 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	388s 398 407 416 425 433 442 450 458 466 474 482 489 497 504 511 518 525 532 539 546 552 559 565 572 578 585 591 598 604 611	10s 9 9 8 8 8 7 7 7 7 7 7 7 6 7 6 7 6 7 6 5	60° 61 62 63 64 65 66 67 78 79 80 81 82 83 84 85 86 87 88 89 90	611s 618 624 631 637 644 650 656 663 669 675 682 688 694 701 707 713 719 725 731 737 743 749 755 760 766 772 778 683 789 795	7s 767667667666666666666666666666666666	90° 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120	795s 801 806 812 817 823 828 834 839 844 849 855 860 865 870 874 879 884 888 893 903 907 912 916 920 925 929 933 938 942	6s 5 6 5 6 5 5 5 6 5 5 5 4 5 5 5 4 5 5 4 5 4

1				TABLE	II.							
	STA	TION 1	, SAI	INT L	OUIS	UNIV	ERSITY	۲.				
		*)	\o, *q	٠.		(*λ ₀ .+3	o*λ _o),	*φ ₀ •		*\a,	(p o	+3* q _o)
Epicentric Latitude,	φο	190	00'	00"		19°	00'	00"		20°	00'	00"
Station Latitude,	Ψ1	38	38	15	2	38	38	15		38	38	15
Epicentric Longitude,	λο	103	00	00		104	00	00		103	00	00
Station Longitude,	λ,	90	13	58.5		90	13	58.5		90	13	58.5
$\lambda_0 - \lambda_1$		12	46	2		13	46	2		12	46	2
Log. $\cos \cdot (\lambda_0 - \lambda_1)$		9.9	9891			9.8	9873			9.8	168	
Log. cos φo		9.9	9757			9.9	757	,		9.8	729	
Log. cos φ ₁		9.8	3927			9.8	3927			9.8	3927	
Log. II		29.8	3575			29.8	3557		l	29.8	57 5	
Log. sin ϕ_o		9.8	51,26			9.5	126			9.5	340	
Log. sin ϕ_1		9.7	7954		l	9.7	7954		l	9.7	954	
Log. I	-	19.3	3080			19.3	8080			19.3	3294	
II		.5	7203			.7	173			.7	157	
I		.2	2033			.2	2033		1		135	
Cos.*A,		.9	236			.9	206				292	
*Δ1		220	32'		*Δ ₁	220	59'		*A, =			
(3*Δ,÷3*λ ₀)·δ*λ ₀			-7'.	76	*4, =				*Δ ₁ φ= *Δ ₁ =	22°	32'	
(3*Δ1÷3*φ°)·δ*φ°			+39 1		9*4°		27'		9*V1°		-51'	
Δ		23°	3 '.		- · X				• φ			
-1		20	٠.	~ .	<u>9*</u> <u>0</u> .	= +.	45		<u>3*∆,</u>	=	85	
					9*y°				9* ¢°			
T 1		00	5'	10"				a, =	. 081			
***		11h	2m	32s				b, =-				
** = ** + **		11h	7 m	42s				٥, =				
* 7 = 1 + - * 1				4s				81 =				
								-				
å ⁵ ₁ → 60 = .18												

TABLE III.											
B	3	ь	c	з	ь						
1	+.08	15	+1	+.93	+4						
2	+.02	15	+1	• . 87	-3						
3	+.09	11	+1	+.98	-1						
4	+.09	12	+1	+. 97	-3						
5	11	14	+1	+. 76	+5						
6	+.07	11	+1	•. 96	0						

		2	TABLE	v.		
20	St.Louis	St.Boniface	Harvard	Buffalo	Santa Clara	Ottawa
Q _n	+.08	+.02	+.09	+.09	11	+.07
bn	15	15	11	12	14	11
$a_n \cdot \delta \lambda_o$	-1.7	4	-1.9	-1.9	+2.3	-1.5
bn · δφο	+4.6	+4.6	+3.4	+3.7	+4.3	+3.4
. 8to	-2.8	-2.8	-2.8	-2.8	-2.8	-2.8
- 8	-4.	+3.	+1.	+3.	- 5.	c.
۲ _n	-3.9	+4.5	3	+2.	-1.2	9

		0 " " 0 0
	+2.0000 FS= +1.0200 FF= +60.0000 -3.9000 $\frac{RF}{aa}$ - aS= -4.0771 $\frac{R}{aa}$ - aF=+10.0000 +5.9000 FS ₁ = +5.0971 +6.1126 $\frac{LF}{bb_1}$ 1=+5.2996 $\frac{DF}{bb_1}$ 1=+8.3400 2126 FS ₂ =2025	*40.5300 *40.5300 = -20'.9 = -29'.5 = -2.7sec 102°39'.23' 18°30'.496' 11h 2m 29s ± 13s
	.10. +10.	+ 40.
	a PF 1	1102 102 118 111 111 111 111 111 111 111 111 11
IV.	문 명명 되고 100	ος τος τ
	+1.0200 FF= -4.0771 <u>aa.</u> +5.0971 +5.2996 <u>bF</u> 11 -2025	1200 3720 4480 1800 3500 5700 90
TABLE	+ 1 4	03 02 02 04 62 51 51
	8S= = BS ₁ =	aa=- ac=- t+ + + +91 +91 +92 +93 +55
	FS= 22 22 1	b= +.024792 bc.aa=031200 $\frac{cE_p}{cE_p}$ c= +.021840 ab.ac=006720 $\frac{cE_p}{cE_p}$ =002952 $-Z_{\phi t}$ +.024480 ff= =-11.048500 $Q_{\phi t}$ +81.621800 $Q_{\phi t}$ +11.048500 $Q_{\phi t}$ +682.672100 $Q_{\phi t}$ =-11.048500 $Q_{\phi t}$ +91.621800 $Q_{\phi t}$ +12.515700 $Q_{\phi t}$ +702.433700 $Q_{\phi t}$ = +93.0890 $Q_{\phi e}$ = $Q_{\phi e}$ +702.433700 $Q_{\phi t}$ +509.1968 $Q_{\phi e}$ = $Q_{\phi e}$
6500 3800 +.4550 8350	+2.0000 -3.9000 +5.9000 +6.1126	4792 1840 2952 3500 2100 1800 3700
i i + i	1 + 5	. 022 . 023 . 048 627 633 433
		b= + c= + 11
+.2509 aF= 7062 bF= 1756 <u>ab</u> aF= 5306 bF ₁ =	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ab cc =1680 ac bb = +.024792 bc as =031200 $\frac{cE_{z}}{cE_{z}}$ cF = +.5657 ac bc =1872 ab bc = +.021840 ab ac ac =066220 $\frac{c}{\Delta t}$ =002952 $\frac{-Z_{\phi}}{\phi_{t}}$ +91.621800 $\frac{c}{\phi_{t}}$ +91.621800 $\frac{c}{\phi_{t}}$ +91.621800 $\frac{c}{\phi_{t}}$ = -20'.9 $\frac{c}{\Delta t}$ = -71.8602 $\frac{c}{\Delta t}$ = -71.8602 $\frac{c}{\Delta t}$ = -11.048500 $\frac{c}{\phi_{t}}$ +91.621800 $\frac{c}{\phi_{t}}$ = -20'.9 $\frac{c}{\Delta t}$ = -40.4214 $\frac{c}{\Delta t}$ = -71.8602 $\frac{c}{\Delta t}$ = -11.048500 $\frac{c}{\Delta t}$ = -11.048500 $\frac{c}{\Delta t}$ = -20'.5 $\frac{c}{\Delta t}$ = -11.0485 $\frac{c}{\Delta t}$ = -11.048500 $\frac{c}{\Delta t}$ = -21.55cc $\frac{c}{\Delta t}$ = -11.0485 $\frac{c}{\Delta t}$ = -10.6601 bs $\frac{c}{\Delta t}$ = -496.0587 bs $\frac{c}{\Delta t}$ +509.1968 $\frac{c}{\Delta t}$ = 11h $\frac{c}{\Delta t}$ = 13
+.2509 aF= 7062 bF= 1756 aBa 5306 bF1	+5.4700 cF +1.5054 aga +3.9646 cF ₁ +3.8843 bc ₁ +3.8843 cF ₂	580 192 192 502 602 602 185 603 185 603 185 185 185 185 185 185 185 185 185 185
+ .2	+5.4700 +1.5054 +3.9646 +3.8843	11.86 11.86 11.04 11.04 11.04 11.04
	i i	
aS= bS= abas= bS:=	+6.0000 cS = +1.4400 agas= +4.5600 cS ₁ = +4.4801 bc ₁ bS +4.4801 cS ₂ = .0799 cS ₂ =	+.004128 ab·cc= +.000784 ac·bc= 2.5157 $0 = 0$ 2.5157 $0 = 0$ 3.5377 $0 = 0$ 3.547 $0 = 0$ 3.5
+.2400 aS= 7800 bS= 1680 abas 6120 bS ₁ =	+6.0000 cS +1.4400 aga +4.5600 cS ₁ +4.4801 bc ₁ +4.4801 cS ₂	28 34 44 44
+.2400 7800 1680 6120	6.00 1.44 1.56 4.48	0041 0007 0033 5157 5377
	Ŧ + + +	+12.5 +13.5 +13.5
ac bc= abac= bc ₁ =	cc = aga ac = cc 1 = cc 2 = cc	aa.bb= Ztt= Qtt= +1 VQtt = 1 Ht= ±1
0280 ac +.1032 bc= +.0196 <u>ab</u> ac +.0836 bc ₁ =	-7.3205 cc = -9.9880 acac cc, cc, cc, cc, cc, cc, cc, cc, cc, cc	+.2400 aa·tb= +.004128 ab·cc= +.0576 ab·ab= +.000784 ac·bc= +.1824 Z_{tt} = +.003344 $Z_{t\phi}$ = 682.6721 Q_{tt} = +12.5157 Q_{ϕ} = +26.1279 $\sqrt{Q_{tt}}$ =+3.5377 $Q_{\lambda\phi}$ = +96'.13 μ_{t} = ±13s Q_{ϕ} = Q_{ϕ} = Q_{ϕ} = Q_{ϕ} = Q_{ϕ} = Q_{ϕ} =
0280 +.1032 +.0196 +.0836	-7.3205 -9.9880 -2.6608	+.2400 +.0576 +.1824 2.6721 6.1279 6'.13
1 + + +	1-7.	+.2400 aa·bb= +.0041. +.0576 ab·ab= +.0007 +.1824 $Z_{\rm t}t^{=}$ +.0033 +682.6721 $Q_{\rm t}t^{=}$ +12.5157 +26.1279 $\sqrt{Q_{\rm t}t}$ =±3.5377 +96'.13 $\mu_{\rm t}^{=}$ ±13s
11		
ab= bb= <u>ab</u> ab= bb ₁ =	다	2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
.04	7000 bb +6.0000 bE -16.2500 cE +3742.7200 p=	+.6192 +.6084 +.0108 0.4214 6.3586 3'.37
	+6.0 16.2 42.7	+.6084 +.6084 +.0108 +40.4214 3586 3586
	+37	
11 00 14 00		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
l a	विष क्षेत्र स्रोत मि	7 7 0 0 0

Jesuit Seismological Service Record of the Earthquake Station, St. Louis University.

ST. LOUIS, MO., U. S. A.

LATITUDE: 38° 38′ 17″ N.

TIME: Mean Greenwich, midnight

LONGITUDE: 90° 13′ 58″,5 or 6h.

to midnight.

0^m. 55^s.9 W. Gr. ALTITUDE: 160.36 m. Instrument: Wiechert 80 kg., as-

tatic, horizontal pendulum.

Nomenclature: International.

The symbols used in the following records are those of the International Nomenclature, which is identical with that given by us in the December Bulletin of the University (1911). For the sake of those who may wish to make further use of our data, we preface the records with the list of constants for the year.

Date.		\overline{E}			N	
	T		ε	T		E
	S			S		
Jan. 3	7.	85	5.	7.	97	5.4
Jan. 7	7.	85	5.1	7.	79	5.1
Jan. 21	6.9	89	5.4	6.3	98	5.
Feb. 17	7.	94	5.	7.	98	4.9
Feb. 21	7.	82	5.	7.	86	5.
May 1	6.7	91	4.1	7.	89	5.7
June 6	7.	67	5.	7.	79	5.
Aug. 17	7.			7.		
Sept. 17	6.5	85	5.	7.	90	5.
Sept. 22	7.	93	5.6	7.	83	6.2
Oct. 10	7.	79	5.	7.	86	5.
Nov. 21	7.	88		6.5	84	• • •
Dec. 17	6.8	88	5.	7.	83	6.

				EAF	?TH	QUAK	DS FOR 1911.		
DATE	CHARACTER	PHASE		TIME		PERIOD T		AMPLITUDE	REMARKS
			h	m	s	s	A _E μ	A _N	
Jan.3-4	IIIu	S _E S _N L _E M _M F _E F _N	23 0 0 0		. 4	34	347	468	P, if present on either component, cannot be recognized on account of microseismic disturtances. The waves in S and first part of L are too irregular for accurate determination of amplitude or period; the earth motion was apparently very complicated. A short train of large irregular waves appeared on N-S component at 23h 57m. 7 between time for RS ₄ and RS ₂ ; cannot identify them.
Feb.4	Ι	eL _E	5	29 06. 38 24	. 5 . 6	30		6	E-W component shows no dis- tinct M.
Feb.4	I	eL _N M _N eL _E	9 9	5 I 07 22 46	.6 .6 .6	12		1	No decided M on E-W.
Feb. 5	Ir	FE iP _N i _N RP _N PS?	4 4	.48 29 29 29 31	.4 .6 .7 .5	3 3.9		5 4	No trace on P on E-W component. The train of waves at 4; 31.5 seems to be PS. Distance calculated 2690 km. Co-ordinates of the epicenter,
		iSn eSE iE iN eL	4 4 4 E	1 33 1 34 1 34 1 34 4 35 4 39	. 7	6		6 9	as determined from data supplied by Ottawa, Harvard, St. Boniface and St. Louis, were λ =89°, ϕ =14°23', near San Salvador, Central America.

DATE	CHARACTER	PHASE	TIME	PERIOD T	AMPLITUDE		REMARKS
			h m s	s	$^{A_{\mathrm{E}}}_{\mu}$	A _N	
Feb.5		M _E C _E F _N F _E	4 39.7 4 42.7 4 51.2 4 54	5.1	13		
Feb.17	I	eP _N		6 7.8	12	18	
Feb. 18	I	eL _N eL _E M F _E F _N	2 04.5	9.6	14.	16	
Feb.18	IIu	e _N S _E L _E eL _M M _E	19 22.1 19 25.6 19 27.4 19 34.1 19 36.1 19 38.6 19 45.1 20 10	18 18	102	211	Up to 19h 42m the motion on both components was very complicated and irregular. Central Asia.
Feb.28	I	eL _E F	4 24.6		:		

				•				
DATE	CHARACTER	PHASE		TIME	PERIOD T	6	AMPLITODE	REMARKS
			h	m s	s	A _E	A _N	
Mar.10	I	eL _N	1	28 34.7 18	17		6	
Mar.10	Ι	eL _E F _E		2.7 45				
Mar.22	I.	eL _N F _N	1	02 37				
Apr.10	Ir	P S _E S _N L M _E M _N F		49.2 54.6 54.6 57.2 3.5 4.2 23	7 9 14 15	22		Distance 3660 km. According to reports received from northern Columbia by the Jesuit Observatory of Havana, the epicenter of the earthquake was between Bogota and Cartagena. The macroseismic data furnished by Havana, Ottawa, Trieste and Saint Louis, place the epicenter at: Long. 75° 50' W.,
Apr.28	IIr	P L L M M F F N F E N F		0.4 7 7.1 7.2 7.2 22 51,	6 5•5	. 13	15	

DATE		CHARACTER	PHASE		TIME.	PERIOD T	A WOT. TIME	and it it	REMARKS
				h	nn s	s	A _E	A _N	
May	4- 5	IIu	P S E L ME FE		48. I 57. 5 58. I 10. 6 11. 6 12. 2 14		8	95	(S-P) _N = 9m31s Distance 8200 km. (S-P) _E = 10m6s Distance 8900 km. The co-ordinates calculated from data furnished by Darmstadt, Vienna and Saint Louis, are: Long. 152° 30'E Lat. 51° N. Kamtohatka.
Jun.	7	IIIr	ePE PP R1S IL M1M M		07.7- 07.8 07.9 08.2 11.9 13.2 17.4 18 35	T _n 3		68 1580 1265	
Jun.	15	II	11E 11N 12 F		47.1 47.1 53.3 33	7.8 8.4 6	75 42	90 36	Phases are doubtful owing to interference of two quakes. China Sea and Mexico
Jul.	•	Ĭr	ePELMFEN		9.9 16.5 16.6 47.1 55.5	10.8	55	60	Epicenter near San Francisco.

∴ DATE	CHARACTER	PHASE	TIME	PERIOD T	AMPLITUDE		REMARKS
		ŀ	n m s	s	A _E μ	A _N	
Jul. 4	Ι	e _E	13 56.2 56.3 14 42.4 47.2				Turkestan.
Jul. 12	Ι	i _{2E} i _{2E} i _{2N} F _N	4 28.3 38.1 38.2 5 54.6 5 54.8	12	77		Japan.
Aug. 16	Iu	eP S L M _E F	22 57 42 23 10 12 33 36 0 01 09 1 11 00	19	90	•	Guam. M _N indistinct.
Aug. 21	I		16 52 12 17 10 00				Near Kamtchatka?
Aug. 27	1	e eL F	02 50 08 08 37 00				P and S too doubtful for deter- mination. Mexico
Sep. 15	Iu	P S e L M M M M M E F	13 28 35 35 45 41 18 42 18 45 08 47 38 15 30	27	32	81	(S-P) = 7m 109 Distance 5550 km.
Sep. 17	Iu	iP S _N	3 40 23 48 53				(S-P) _N = 8 ^m 30 ^s Distance 7000 km. Chili.

			,				
DATE	CHARACTER	PHASE	TME	PERIOD T	A MDF. TWILDE		REMARKS
			h m s	s	A _E	A _N	
		SE eLM E ME ME	4 00 53	15	49	78	
Sep.22	Iu	ePu ePE eSu eSE Lu Mu ME F	15 35 22 29 22 35 27 59 28 53 29.08	8	Imm	lmm-	(S-P) = 7 ^m Distance 5300 km. Alaska.
Oct.6	IIr	iS _N iS _E L _N L _E M _N	26 35 29 39 29 44 31 30	5 5	172	204	(S-P) _E = 4 ^m 42 ^s . Distance 3000 km. Haiti
Oct. 10	Ir	LE Mu ME	13 18 03 22 45 25 33 26 00 35 00 35 45 14 00		25	30	Same determination as for October 6.

			· · · · · · · · · · · · · · · · · · ·				
DATE	CHARACTER	PHASE	ŢĬĸŖ	PERIOD T	AMPLITUDE		REMARKS.
			h m s	s	A _E	AN	
0ct. 15	Ί.	e L _N M _E	16 58? 99 11.9 12.5	15	25		S and P could not be determined on account of microseismic disturbances.
Oct.29	Ir	F P _N P _E S _E	18 02 18 20.9 21 25.9 26				No distinot Maximums.
Nov-18	I	L _E L _N F	28. 1 28. 9. 46 7 38. 2				$P_{\overline{K}}$ and $S_{\overline{K}}$ not distinct.
		P _N S _N L _N F	43 48 8 06				
Nov. 20	I	PN PE SN LN LE ME	13 54.7 55.5 58.5 14 05 06.5	15	-18		Distance 3150 km.
Nov. 22	I	M _N F	08.5 16.5 10 20.4	15		44	E-W too indistinot.
Nov. 25		F PE PN	21 27.3 19 35.87 37 ?	1			
		S _E S _N L _E L _N	39.8 42 42.8 43				
		M _E	43.6 45	12		35	F lost in microssisms.

DATE	CHARACTER	PHASE		TIME	PERIOD T	ANPLITUDE		REMARKS.
			h	m s	s	A _E	A _N	
Dec. 16	IIIc	iPn iSE iSn LE	:19	19.5 23.8 23.8 25.2	638 8.7 8.7	3	23 49	(S-P) _N =4 ^m 20s. Distance 2690 km. Mexico.
		L _N M _N M _E F _N F _E	21	25.3 30 30 06.5 12.5	12	546	1064	
Dec.22	I	P SE N LE M		00.1 04.6 04.6 08.1 08.2 20.6	. 13		45	(S-P) _N = 4 m 30 s Distance 2830 km.
Dec. 23	I	M _E F	7	20.7 38 57.9	1	34		
		L _N		58.8 58.7			í	F overlapped by following quake
Dec.23	I	өй өё Е	8	08.6 07.5 43				

ACKNOWLEDGMENTS.

Our sincerest thanks are hereby tendered to Rev. Henry J. De Laak, S. J., Professor of Physics in St. Louis University, and to Prof. F. W. D. Peebles, E. E., for their valuable assistance in the preparation of the April Bulletin of the University for this year.

We also wish to express our gratitude to those kind friends who have supported the Geophysical Observatory during the past year; as well as to the following, whose contributions and exchanges have enriched our Observatory Library:

AUSTRIA.

Cracow.—K. k. Sternwarte.—Wöch. Erdb., Nos. 1-46, 1911.

Graz.—Physik. Institut, Dr. A. Fritsch.—Wöch. Erdb., No. 1-16. Dr. Norbert Stücker.—Wöch. Erdb., Nos. 17-52, 1911. Dr. N. Stücker u. Dr. A. Fritsch.—Seismische Registrierungen in Graz. Dritter Bericht für das Jahr 1909. Dr. N. Stücker.—Seismische Registrierungen in Graz, Vierter Bericht für das Jahr 1910.

Laibach.—Erdbebenwarte, Prof. A. Belar.— $W\ddot{o}ch$. Erdb., Nos. 1-52, 1911.

Lemberg.—K. k. Technische Hochschule, Prof. Dr. L. Grabowski. —Wöch. Erdb., Nos. 0-52, 1911.

Pola.—K. k. Hydrographisches Amt, Capt. F. W. Kesslitz.— Wöch. Erdb., Nos. 1-52, 1911.

Sarajewo.—Meteor. Observatorium, Adj. Otto Harrisch.—Wöch. Erdb., Nos. 1-52, 1911. Zusammen-Stellung der Ergebnisse der im Jahre 1910 in Bosnien u. d. Hercegovina stattgefundenen Erdbebenbeobachtungen, 1911.

Trieste.—K. k. Maritim. Observatorium, Prof. Dr. E. Mazelle.— Wöch. Erdb., Nos. 1-52, 1911.

Vienna.—K. k. Zentralanstalt für Meteorologie u. Geodynamik, Dr. R. Schneider.—Wöch. Erdb., Nos. 1-46. Dr. Kohler, Nos. 47-51, 1911.—Mitt. der Erdb. Kom. Neue Folge, No. XLI, Seism. Registr. im Jahre 1910.

CANADA.

Ottawa (Ont.).—Earthquake Station, Prof. Otto Klotz, LL. D., F. R. A. S.—Records, Nos. 1-18, 1911. Special Issues, 4. Report of the Chief Astronomer, 5 volumes, 1905-1909. Plate of Seismogram.

CHINA.

Tsingtau.—Seism. Registr., Nos. 158-238, 1911.

FRANCE.

Paris.—Bureau Central Météorologique de France, M. A. Angot.
—Bulletin Sismologique, January-September, 1911. MM. Claude Ferrié et Driencourt.—Comparaisons radiotélégraphiques de chronométres par la méthode des coïncidences entre Paris et Bizerte.

ENGLAND.

Shide.—Mr. John Milne, F. R. S., Sec. Seism. Com.—Circular No. 24, British Association for the Advancement of Science.

GERMANY.

Darmstadt.—Seismische Station, Prof. Dr. C. Zeissig.—Records, 14. *Mitteilungen*, Nos. 1-12, 1911.

Göttingen.—Geophysikalisches Institut, Dr. E. Wiechert.—Ein astatisches Pendel hoher Empfindlichkeit zur mechanischen Registrirung von Erdbeben.

Hamburg.—Hauptstation für Erdb., Dr. E. Tams.—Mitteilungen, Nos. 1-45, 1911. Bericht über die Tagung der Internationalen Seismologischen Association in Manchester, 18. bis 22. Juli, 1911.

Jena.—Seismische Station, Dr. W. Pechau.—Monatliche Erdbebenberichte, Aug.-Oct., 1910.

Strassburg.—Kais. Hauptst. für Erdb., Dr. C. Mainka.—Seismom. Aufzeich. in Strassburg i. E., Nos. 1-48, 1911. Bulletin Sismique de Reykjavik, Nos. 7-12, 1910.

HAITI.

Port au Prince.—Société Astron. et Météor., F. Constantin.— Bulletin, November, 1910; July, 1911; Special, 1.

HUNGARY.

Budapest.—K. Ung. Reichsanst. für Met. u. Erdmagn., Dr. A. Pécsi.—Bulletin Hebdomadaire des Obs. Sism. de Budapest, Fiume, Kalocsa, Ogyalla et Temesvar, Nos. 1-21, 31-43; Dr. Harmann, 22-30, 1911. G. Strömpl.—Bulletin Macrosismique, 1911.

Zagreb (Agram).—Meteorologisches Observatorium, Dr. A. Mohorovičić.—Jahrbuch, Jahrgang VI., IV. Teil, Erdbeben in Kroatien und Slavonien im Jahre 1906, pp. 151. Jahrbuch, Jahrgang VII.,

IV. Teil, etc., im Jahre 1907, pp. 45; Jahrbuch, Jahrgang VIII., IV. Teil, etc., im Jahre 1908, pp. 55; Jahrbuch, Jahrgang IX., IV. Teil, Abschnitt 1, Das Beben vom 8. X. 1909, (mit Laufzeitkurven Einzelner Phasen des Nahbebens), pp. 63 und Platte.

ITALY.

Catania.—R. Osservatorio di Catania ed Etneo, Prof. A. Riccò.— Bulletino Sismologico, January-July, 1911.

Chiavari.—Osservatorio Meteorico-Sismico, Prof. C. Bianchi.— La Temperatura dell'Aria a Chiavari nel ventisettenio, 1883-1910. Riassunto delle Osservazioni Meteorologiche Fatte in Chiavari negli Anni, 1908-1909.

Moncalieri.—Osserv. del R. Coll. Carlo Alberto, Dr. G. Penta.— Bolletino Meteorologico e Geodinamico, Osservazioni Sismiche, Nos. 1-10. Osservazioni Meteorologiche, January-December, 1911.

Montecassino.—Osservatorio Meteorico-Geodinamico, D. Bernardo M. Paoloni, O. S. B.—*Bolletino Decadico*, Nos. 1-23, 1911.

Padua.—Istituto di Fisica, Prof. G. Vicentini.—Bolletino Mensile, Nos. 1-11, 1911.

Rocca di Papa (Roma).—R. Osservatorio Geodinamico, G. Agamennone e A. Cavasino.—Sopra una Presunta Periodicità Secolare nella Ricorrenza dei Grandi Terremoti. G. Agamennone.—Modo Pratico per Tracciare una Meridiana. Il Terremoto Laziale del 10 Aprile, 1911.

Valle di Pompei (Naples).—Osservatorio Pio X. Sac. Dott. Giov. Batt. Alfano.—Bolletino Meteorico, Nos. 28-32, 1910; 33-41, 1911. Riassunto della Sezione Meteorica dell' Osservatorio Pio X in Valle di Pompei, 1909.

JAPAN.

Osaka.—Meteorological and Seismological Observatory, Mr. N. Shimono.—List of Earthquakes, January-December, 1911. Great Earthquake of Turkestan. Annual Report, Part II, Seismological Observations in Osaka, 1910.

Tokyo.—Imperial Earthquake Investigation Committee, Dr. F. Omori.—Bulletin, Vol. IV, No. 2. Application of Seismographs to the Measurement of the Vibrations of Railway-Bridge Piers. Bulletin, Vol. V, No. 1. The Usu-San Eruption and Earthquake and Eruption Phenomena.

MALTA,

Valletta.—Seismological Observatory, Prof. C. Leach.—Earthquake Register, December, 1910; November, 1911.

MEXICO.

Mexico.—Instituto Geologico de Mexico.—Parergones, Tom. III, No. 7, 1910-No. 10, 1911, Jorge Engerrand y Fernando Urbina, Excursion Geologica en Yucatan; Y. S. Bonillas, Estudio Quimico y Optico de una Labradorita del Pinacate. Parergones, Tom. III, No. 8, 1911; Dr. Jose G. Aguilera, Catalogo de los Temblores (Macroseismos) Sentidos en la Republica Mexicana y Microseismos Registrados en la Estacion Seismologica Central, Tacubaya, D. F., durante el Secundo Semestre de 1909. Boletin, No. 28, Juan D. Villarello, Las Aguas Subterraneas en el Borde Meridional de la Cuenca de Mexico; Juan S. Agraz, Informe sobre las Aguas del Rio de la Magdalena.

ROUMANIA.

Bucarest.—Observatoire Astrom. et Meteor.—Bulletin Sismique, No. 1.

RUSSIA.

St. Petersburg.—Commission Sismique Permanente, Prince B. Galitzin.—Seismometrische Tabellen. Ueber ein neues aperiodisches Horizontalpendel mit galvanometrischer Fernregistrierung. Bestimmung der Lage des Epizentrums eines Bebens aus den Angaben einer einzelnen Station. Beobachtungen ueber die Verticalkomponente der Bodenbewegung. Ueber ein neues schweres Horizontalpendel mit mechanischer Registrierung fuer seismische Stationen zweiten Ranges. Ueber die Schwingungs-Richtung eines Bodentheilchens in den transversalen Wellen der zweiten Vorphase eines Bebens. Die neue Organization des seismischen Dienstes in Russland. Ueber einen Seismographen für die Verticalkomponente der Bodenbewegung. Ueber eine dynamische Scala zur Schätzung von makroseismischen Bewegungen. Zur Frage der Bestimmung des Azimuts des Epicentrums eines Bebens. Das Erdbeben vom 3.-4. Januar, 1911. Report of the Manchester Meeting of the International Seismological Association, July, 1911, (Russian).

Tiflis (Caucasus).—Physikalisches Observatorium, Prof. P. Stelling.—Wöch. Erdbebenberichte, Nos. 188-229. S. Belaeff.—Wöch. Erdbebenberichte, Nos. 243-248.

SERVIA.

Belgrade.—Institut Géologique de l'Université de Belgrade, Prof. J. Mihailović.—Observations Microsismique, Nos. 1-126.

SPAIN.

San Fernando (Cadiz).—Inst. y Observ. de Marina, Exemo. Sr. Gen. D. T. Azcárate.—Registro de Observaciones Sismicas, Nos. 1-12, January-December, 1911.

UNITED STATES.

Albany (N. Y.).—Seismographic Station, Dr. D. H. Newland.— Records, Jan. 3, Dec. 16, 1911.

Berkeley (Cal.).—University of California Seismographic Stations, Prof. H. O. Wood.—Bulletin of the Seismographic Stations, The Registration of Earthquakes at the Berkeley Station from Oct. 30, 1910-March 31, 1911.

Cambridge (Mass.).—Harvard Seismographic Station, Prof. J. B. Woodworth.—Records, Nos. 1-14a. Prefatory Note. Third Annual Report, August, 1910-July, 1911.

Seattle (Wash.).—University of Washington, Department of Geology, Prof. E. J. Saunders.—Records, 3, 1911.

Rolla (Mo.).—Missouri Bureau of Geology and Mines, Prof. H. A. Buehler.—Vol. IX, Parts 1 and 2. Prof. E. R. Buckley.—2nd Series, Vols. I-VIII.

St. Louis (Mo.).—Local Station, U. S. Weather Bureau, Mr. Montrose W. Hayes.—Daily Weather Maps, Jan. 1-Dec. 31, 1911. Monthly Meteorological Summary, January-December, 1911. Telegraphic Reports of Thunderstorms. City Sewer Department.—Precise Level Bench Marks. B. H. Colby.

Washington (D. C.).—U. S. Weather Bureau, Prof. Willis L. Moore, Chief.—Daily Weather Map, Jan. 1-Dec. 31, 1911. Monthly Weather Review. Annual Report of the Chief of the U.S. Weather Bureau. Bulletin of the Mt. Weather Observatory, January-December, 1911. Monthly Meteorological Charts of the North Pacific Ocean. Monthly Meteorological Charts of the North Atlantic Ocean. Monthly Meteorological Charts of the Great Lake Region. Monthly Meteorological Chart of the Indian Ocean. Hearings before the Committee on Agriculture. Prof. C. F. Marvin.—Psychrometric Tables. Instruction for Co-operative Observers. The Measurement of Atmospheric Pressure. Instructions for Operating the Hydrograph. Anemometry, (Circular D, Instrumental Division). Note on the relation between the Temperature and Resistance of Nickel. Upon the Construction of the Wheatstone Bridge for Electrical Resistance Thermometer. A Universal Seismograph for Horizontal Motion and Notes on the Requirements that must be Satisfied.

JESUIT SEISMOLOGICAL SERVICE.

CANADA.

St. Boniface (Man.).—St. Boniface College Observatory, A. Rousseau, S. J.—*Records*, January-June, 1911. Rev. J. Blain, S. J.—*Records*, July-December, 1911. Special, 17.

CHINA.

Shanghai.—Observatoire de Zi-ka-wei, Rev. H. Gauthier, S. J. —Bulletin Sismologique, January-December, 1911. Special, 39.

ENGLAND.

Stonyhurst (Blackburn).—Observatory, Rev. Walter Sidgreaves, S. J., F. R. A. S.—Earthquake Records, January-December, 1911. Cards with Earthquake Data, 15. Newton and Galileo, reprint from Knowledge, July, 1910. Galileo Galilei, reprint from Journal of Brit. Astron. Assoc., October, 1910. Newton on the Earth's Motion.

PHILIPPINES.

Manila.—Central Observatory, Rev. José Algue, S. J.—Meteorological Bulletin, January, 1910-June, 1911. Rev. M. Saderra Masó.
—Seismological Bulletin, Nos. 1-228, 1911. The Eruption of Taal Volcano, Jan. 30, 1911. Catalogue of Philippine Earthquakes, 1910. Rev. José Coronas.—Three Typhoons which caused Heavy Floods in Luzon.

SYRIA.

Beyrouth.—Observatoire de Ksara (Liban), Rev. B. Berloty, S. J.—Bulletin Météorologique et Sismique, January-December, 1911.

SPAIN.

Cartuja.—Estacion Sismologica, Rev. Manuel M. S. Navarro-Neumann, S. J.—*Boletin Mensual*, Nos. 1-12, 1911.

Tortosa.—Observatorio del Ebro, Rev. R. Cirera, S. J.—Boletin Mensual, June, 1910-April, 1911.

UNITED STATES.

Buffalo (N. Y.).—Canisius College Observatory, W. C. Repetti, S. J.—Records, January-August, 1911. M. J. Ahern, J. S.—Records, September-December, 1911. Special, 9.

Cleveland (O.).—St. Ignatius College Observatory, Rev. F. L. Odenbach, S. J.—*Records*, 3; Special, 5.

Denver (Colo.).—Sacred Heart College Observatory, Rev. A. W. Forstall, S. J.—Records, 1-12, 1911. Special, 5. Prints of Seismograms, 2.

New Orleans (La.).—Loyola University Observatory, A. S. Kunkel, S. J.—*Records*, 1-5, 1911. J. B. Franckhauser, S. J.—*Records*, 6-12, 1911.

Santa Clara (Cal.).—Santa Clara College Observatory, Rev. J. Ricard, S. J.—*Records*, 48-85; Special, 36.

Spokane (Wash.).—Gonzaga College Observatory, E. M. Bacigalupi, S. J.—*Records*, 1-6, 1911. E. A. McNamara, S. J.—*Record*, No. 7, 1911; Special, 1.

Spring Hill (Ala.).—Spring Hill College Observatory, Rev. Cyril Ruhlmann, S. J.—*Records*, 1-12, 1911; Special, 3.

SPECIAL DONATIONS.

Symons' Monthly Meteorological Magazine, 27 Volumes.

Meteorologische Zeitschrift, 6 Volumes.

Earthquakes—Prof. W. H. Hobbs.

Earthquakes-Prof. John Milne, F. R. S., F. G. S.

Volcanoes-Prof. John W. Judd, F. R. S.

Earthquakes-Major C. E. Dutton, U. S. A.

Meteorology—Thomas Russell.

P. Angelo Secchi-Dr. Joseph Pohle.

Erdbebenkunde-Dr. Edwin Hennig.

Wind und Wetter-Prof. Dr. Leonhard Weber.

Wetterpropheten-Johann Beudel.